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Background



Domain-Independent Dynamic Programming (DIDP)

A user can solve a combinatorial optimization problem by formulating
a Dynamic Programming (DP) model

Combinatorial DP Model General-Purpose Solution
Optimization Problem DP Solver
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Modeling Interface Current solvers (in Rust)
(Python or YAML) use heuristic search

Recently proposed by us [Kuroiwa and Beck 2023Db]



Example: DP Model for TSP

« TSP: Minimize the total travel cost to visit all customers and return

« DP: State space representation of the problem
Customers are visited one by one in TSP
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State transition graph for the DP model of TSP



Example of DIDP with Python

import didppy as dp

model = dp.Model(maximize=False)

customer = model.add object type(number=4)

¢ = model.add int table([[O, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add set var(object type=customer, target=[1, 2, 3])

1 = model.add element var(object type=customer, target=0)

for j in range(1l, 4):
visit = dp.Transition(
name="visit {}".format(j)
cost=c[i, j] + dp.IntExpr.state cost(),
effects=[(u, u.remove(j)), (i, )1,
preconditions=[u.contains(j)],

)

model.add transition(visit)

model.add base case([u.is empty()], cost=c[i, 0O])

model.add dual bound(0)

solver = dp.CABS(model, threads=32)
solution = solver.search()

Define constants and
state variables

Define transitions
between states

Define goal conditions

Call a solver
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Solving DP with Heuristic Search

Solving the DP model by finding a path in the state transition graph
f-value: priority to expand, g + h

— T
g-value: actual path cost h-value: estimation by a heuristic function
(given with a DP model in current DIDP)
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]
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Parallel Beam Search Algorithms



Approach 1: Shared Beam Search (SBS)

« Expand the best b states (obtained by parallel sort) in parallel

« Use a concurrent hash table for duplicate detection
Divided into multiple shards, and each shard has a lock

keyl : valuel

key4 1 valued

key7 1value7
Shard 1

key?2 : value2

key5 1 value5

key8 1value8
Shard 2

key3 : value3

key6 . value6

key9 1 value9
Shard 3

Similar to problem-specific parallel beam search by Frohner+ (2023)




Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

b = 2, #threads = 2

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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. b
« Each thread locally detects duplicates and expands —— - states

b = 2, #threads = 2

Assigned to a thread

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Expanded states are different
from sequential beam search

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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HDBS1: Immediate Layer Synchronization

Expand the best states in layer i

|

Send successors in layeri + 1

- Expand the best states in layer i

Receilve successors in layer i + 1

e

-

Synchronize

/\

Go to the next layer (i « i+ 1) Go to the next layer (i « i+ 1)
Thread 1

31




HDBS2: Delayed Layer Synchronization

» Expand the best states in layer i

Expand the best states in layer i

Check if all threads finish layeri — 1 L

4 Check If all threads finish layer i — 1

Send successors in layeri + 1

Send successors in layer i + 1

Receive successors in layeri + 1

Receilve successors in layeri + 1

Notify that layer i is finished
Go to the next layer (i « i+ 1)

Notify that layer i is finished
Go to the next layer (i « i+ 1)

Thread 1

Thread 2
32




Experimental Evaluation



SBS vs. HDBS: Mean Speedup against Single Thread

TSP with Time Windows (TSPTW) Assembly Line Balancing (SALBP-1)
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Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)
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SBS vs. HDBS: Mean Speedup against Single Thread

Minimization of Open Stacks (MOSP) Graph-Clear (building security problem)
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DIDP vs. Commercial Parallel Optimization Solvers

Problem Description Gurobi CPO DIDP (HDBS2)
TSPTW (340) TSP with time 239/4.2 27/0.1 262/13.3
CVRP (207) vehicle routing 29/5.3 o/ - 8/ 9.3
SALBP-1 (2100) line balancing 1351/1.3 1581/1.4 1826/18.8
Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1239/39.6
MOSP (570) manufacturing 238/3.1 397/0.3 531/ 9.0
Graph-Clear (135)  building security 16/2.0 4/3.2 113/10.3

#optimally solved / mean speed up

* Resources: 32 threads, 5-min, and 188GB

« Gurobi: mixed-integer programming solver

« CPO: IBM ILOG CP Optimizer (constraint programming solver)



Conclusion

A parallel beam search algorithm, HDBS2, shows good speedup and
yields a high-performance parallel combinatorial optimization solver

 Start DIDP with Python: pip install didppy

Tutorials and APl References Project Page GitHub Repo
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