
Parallel Beam Search Algorithms 
for Domain-Independent 
Dynamic Programming

Ryo Kuroiwa and J. Christopher Beck
Toronto Intelligent Decision Engineering Laboratory (TIDEL)

Department of Mechanical and Industrial Engineering,

University of Toronto



Background

2



Domain-Independent Dynamic Programming (DIDP)

A user can solve a combinatorial optimization problem by formulating 
a Dynamic Programming (DP) model

compute 𝑉 𝑁 \ {0 , 0)
𝑉 𝑈. 𝑖 = min

𝑗∈𝑈
𝑐𝑖𝑗 + 𝑉(𝑈\ 𝑗 , 𝑗)

𝑉 ∅, 𝑖 = 𝑐𝑖0

Modeling Interface

(Python or YAML)

Combinatorial 

Optimization Problem

DP Model General-Purpose 

DP Solver
Solution

3

Current solvers (in Rust) 

use heuristic search

Recently proposed by us [Kuroiwa and Beck 2023b]



Example: DP Model for TSP

• TSP: Minimize the total travel cost to visit all customers and return

• DP: State space representation of the problem
Customers are visited one by one in TSP

4

State transition graph for the DP model of TSP

Initial state Goal state



Example of DIDP with Python

5

Define constants and 

state variables

Define transitions 

between states

Define goal conditions

Call a solver



Example of DIDP with Python

6

Define transitions 

between states

Call a solver

Contribution of this paper

Define goal conditions

Define constants and 

state variables



Solving DP with Heuristic Search

Solving the DP model by finding a path in the state transition graph

7

Initial state Goal

ℎ-value: estimation by a heuristic function 

(given with a DP model in current DIDP)
𝑔-value: actual path cost

𝑓-value: priority to expand, 𝑔 + ℎ

5

6

5

4

1

2

2

4

4

3



CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

8

Initial state

𝑏 = 2



CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

9

4
4

Initial state Goal

𝑏 = 2



CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

10

5

6

5

4

1

2

2

4

4

3

𝑏 = 2



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

11

9

7

8

5

6

5

4

1

2

2

3

4

5

3

3

𝑏 = 2
3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

12

𝑏 = 2 9

7

8

8

5

6

5

4

1

2

2

3

1

3

4

4

5

3

3

3

3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

13

𝑏 = 2 9

7

8

8

5

6

5

4

1

2

2

3

1

3

4

4

5

3

3

3

3

Duplicate detection

using a hash table

Keep the best path

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

14

𝑏 = 2 9

7

6

8

5

6

5

4

1

2

2

3

1

3

5

3

3

3

3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

15

𝑏 = 2 9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

2

1

3

1

1

2

3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

16

𝑏 = 2 9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

2

1

3

7

3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]

17

𝑏 = 2 9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

2

1

3

7

3

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



Parallel Beam Search Algorithms

18



Approach 1: Shared Beam Search (SBS)

• Expand the best 𝑏 states (obtained by parallel sort) in parallel

• Use a concurrent hash table for duplicate detection
Divided into multiple shards, and each shard has a lock

19

key1 value1

key4 value4

key7 value7

… …

key2 value2

key5 value5

key8 value8

… …

key3 value3

key6 value6

key9 value9

… …

Shard 1 Shard 2 Shard 3

Similar to problem-specific parallel beam search by Frohner+ (2023)



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

20

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

4
4

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

21

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

4
4

Assigned to a thread

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

22

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

5

6

5

4

1

2

2

4

4

3

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

23

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

5

6

5

4

1

2

2

4

4

3

Sent to the 

assigned thread

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

24

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

8

5

6

5

4

1

2

2

3

3

4

5

3

3

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

25

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

8

8

5

6

5

4

1

2

2

3

3

1

3

4

4

5

3

3

3

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

26

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

8

8

5

6

5

4

1

2

2

3

3

1

3

4

4

5

3

3

3

𝑏 = 2, #threads = 2

Duplicate detection

in each thread



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

27

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

6

8

5

6

5

4

1

2

2

3

3

1

3

5

3

3

3

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

28

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

2

1

3

1

1

2

3

𝑏 = 2, #threads = 2



7

Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

29

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

3

3

2

1

Expanded states are different 

from sequential beam search

𝑏 = 2, #threads = 2



7

Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

30

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

9

7

6

8

7

6

5

6

5

4

8

9

1

2

2

3

3

1

3

3

3

3

2

1

𝑏 = 2, #threads = 2



HDBS1: Immediate Layer Synchronization

31

Expand the best states in layer 𝑖

Receive successors in layer 𝑖 + 1 

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 1

Send successors in layer 𝑖 + 1 

Expand the best states in layer 𝑖

Receive successors in layer 𝑖 + 1 

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 2

Send successors in layer 𝑖 + 1 

Synchronize



HDBS2: Delayed Layer Synchronization

32

Expand the best states in layer 𝑖

Check if all threads finish layer 𝑖 − 1 

Receive successors in layer 𝑖 + 1 

Notify that layer 𝑖 is finished

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 1

Send successors in layer 𝑖 + 1 

Expand the best states in layer 𝑖

Check if all threads finish layer 𝑖 − 1 

Receive successors in layer 𝑖 + 1 

Notify that layer 𝑖 is finished

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 2

Send successors in layer 𝑖 + 1 



Experimental Evaluation

33



SBS vs. HDBS: Mean Speedup against Single Thread

34

TSP with Time Windows (TSPTW) Assembly Line Balancing (SALBP-1)

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)



SBS vs. HDBS: Mean Speedup against Single Thread

35

Minimization of Open Stacks (MOSP) Graph-Clear (building security problem)

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)



DIDP vs. Commercial Parallel Optimization Solvers 

Problem Description Gurobi CPO DIDP (HDBS2)

TSPTW (340) TSP with time 239/4.2 27/0.1 262/13.3

CVRP (207) vehicle routing 29/5.3 0/    - 8/  9.3

SALBP-1 (2100) line balancing 1351/1.3 1581/1.4 1826/18.8

Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1239/39.6

MOSP (570) manufacturing 238/3.1 397/0.3 531/  9.0

Graph-Clear (135) building security 16/2.0 4/3.2 113/10.3

36

#optimally solved / mean speed up

• Resources: 32 threads, 5-min, and 188GB

• Gurobi: mixed-integer programming solver

• CPO: IBM ILOG CP Optimizer (constraint programming solver)



Conclusion

• A parallel beam search algorithm, HDBS2, shows good speedup and 

yields a high-performance parallel combinatorial optimization solver

• Start DIDP with Python: pip install didppy

37

Tutorials and API References Project Page GitHub Repo


	スライド 1: Parallel Beam Search Algorithms for Domain-Independent Dynamic Programming
	スライド 2
	スライド 3: Domain-Independent Dynamic Programming (DIDP)
	スライド 4: Example: DP Model for TSP
	スライド 5: Example of DIDP with Python
	スライド 6: Example of DIDP with Python
	スライド 7: Solving DP with Heuristic Search
	スライド 8: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 9: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 10: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 11: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 12: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 13: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 14: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 15: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 16: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 17: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 18
	スライド 19: Approach 1: Shared Beam Search (SBS)
	スライド 20: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 21: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 22: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 23: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 24: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 25: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 26: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 27: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 28: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 29: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 30: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 31: HDBS1: Immediate Layer Synchronization
	スライド 32: HDBS2: Delayed Layer Synchronization
	スライド 33
	スライド 34: SBS vs. HDBS: Mean Speedup against Single Thread
	スライド 35: SBS vs. HDBS: Mean Speedup against Single Thread
	スライド 36: DIDP vs. Commercial Parallel Optimization Solvers 
	スライド 37: Conclusion

