Parallel Beam Search Algorithms
for Domain-Independent
Dynamic Programming

Ryo Kuroiwa and J. Christopher Beck
Toronto Intelligent Decision Engineering Laboratory (TIDEL)

Department of Mechanical and Industrial Engineering,
ooooooooooooo Q/Q\ University of Toronto &

¥ TORONTO

Engineering Laboratory

Background

Domain-Independent Dynamic Programming (DIDP)

A user can solve a combinatorial optimization problem by formulating
a Dynamic Programming (DP) model

Combinatorial DP Model General-Purpose Solution
Optimization Problem DP Solver

N - LI Q
L fﬁa??)“teggsf%’ewm - O
Hm .

V(@, l) = Cio

Modeling Interface Current solvers (in Rust)
(Python or YAML) use heuristic search

Recently proposed by us [Kuroiwa and Beck 2023Db]

Example: DP Model for TSP

« TSP: Minimize the total travel cost to visit all customers and return

« DP: State space representation of the problem
Customers are visited one by one in TSP

» R
Initial state @ R N Goal state
Som | TS
T

&-n ‘-g - & - ‘

State transition graph for the DP model of TSP

Example of DIDP with Python

import didppy as dp

model = dp.Model(maximize=False)

customer = model.add object type(number=4)

¢ = model.add int table([[O, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add set var(object type=customer, target=[1, 2, 3])

1 = model.add element var(object type=customer, target=0)

for j in range(1l, 4):
visit = dp.Transition(
name="visit {}".format(j)
cost=c[i, j] + dp.IntExpr.state cost(),
effects=[(u, u.remove(j)), (i,)1,
preconditions=[u.contains(j)],

)

model.add transition(visit)

model.add base case([u.is empty()], cost=c[i, 0O])

model.add dual bound(0)

solver = dp.CABS(model, threads=32)
solution = solver.search()

Define constants and
state variables

Define transitions
between states

Define goal conditions

Call a solver

Example of DIDP with Python

import didppy as dp

model = dp.Model(maximize=False)

customer = model.add object type(number=4)
model.add int table([[O, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
model.add set var(object type=customer, target=[1, 2, 3])
model.add element var(object type=customer, target=0)

J 1in range(l, 4):

visit = dp.Transition(
name="visit {}".format(j)
cost=c[i, j] + dp.IntExpr.state cost(),
effects=[(u, u.remove(j)), (i,)1,
preconditions=[u.contains(j)],

)

model.add transition(visit)

model.add base case([u.is empty()], cost=c[i, 0O])

model.add dual bound(0) Contribution Of thlS paper

solver = dp.CABS(model, |threads=32|
solution = solver.search()

Define constants and
state variables

Define transitions
between states

Define goal conditions

Call a solver

Solving DP with Heuristic Search

Solving the DP model by finding a path in the state transition graph
f-value: priority to expand, g + h

— T
g-value: actual path cost h-value: estimation by a heuristic function
(given with a DP model in current DIDP)
YN — T

-~
-~
—~—
-~
-~
-~
-~
-~
-~

., 2 4 ~~~~~~~~~ /;’-\\\\
Initial state ° G ————————————————————————— + » Goal

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

b =2

Initial state O

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

b =2

4 Pt
Initial state @ ——————————————————————————————————— S Goal

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

« Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

~—
-~
—~—
-~
~—
-~
-~
-~
~—
~
-~

-~
-~
-~

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

« Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

« Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

3 G
b =2 0 1
i G /
0 2

A\

\yl n

e / _I/
G (62
3 G ("

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

3 (&)

b =2 a 3
1 e

3 2

CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

 Beam search expands the b states minimizing f-values in each layer

« Complete Anytime Beam Search (CABS) repeats beam search with
iIncreasing b until finding an optimal solution [zhang 1998]

3 (&)

b =2 a 3
1 e

3 2

Parallel Beam Search Algorithms

Approach 1: Shared Beam Search (SBS)

« Expand the best b states (obtained by parallel sort) in parallel

« Use a concurrent hash table for duplicate detection
Divided into multiple shards, and each shard has a lock

keyl : valuel

key4 1 valued

key7 1value7
Shard 1

key?2 : value2

key5 1 value5

key8 1value8
Shard 2

key3 : value3

key6 . value6

key9 1 value9
Shard 3

Similar to problem-specific parallel beam search by Frohner+ (2023)

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

b = 2, #threads = 2

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

. b
« Each thread locally detects duplicates and expands —— - states

b = 2, #threads = 2

Assigned to a thread

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states

#threads
4
4‘ ~~~~~~~ - - yf," \\\\

L~ i e - —— : i n
Senttothe ~ _----~ R
assigned thread

3

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

. b
« Each thread locally detects duplicates and expands —— - states

CEERR
Duplicate detection

In each thread
8 F-——3 -7

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

. b
« Each thread locally detects duplicates and expands —— - states

Y
Cy
.
.
S
ey
cy
Py 7

Expanded states are different
from sequential beam search

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

Approach 2: Hash Distributed Beam Search (HDBS)

« Send a state to a thread determined by its hash value using
message passing (duplicate states sent to the same thread)

« Each thread locally detects duplicates and expands ° __ states
#threads

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

HDBS1: Immediate Layer Synchronization

Expand the best states in layer i

|

Send successors in layeri + 1

- Expand the best states in layer i

Receilve successors in layer i + 1

e

-

Synchronize

/\

Go to the next layer (i « i+ 1) Go to the next layer (i « i+ 1)
Thread 1

31

HDBS2: Delayed Layer Synchronization

» Expand the best states in layer i

Expand the best states in layer i

Check if all threads finish layeri — 1 L

4 Check If all threads finish layer i — 1

Send successors in layeri + 1

Send successors in layer i + 1

Receive successors in layeri + 1

Receilve successors in layeri + 1

Notify that layer i is finished
Go to the next layer (i « i+ 1)

Notify that layer i is finished
Go to the next layer (i « i+ 1)

Thread 1

Thread 2
32

Experimental Evaluation

SBS vs. HDBS: Mean Speedup against Single Thread

TSP with Time Windows (TSPTW) Assembly Line Balancing (SALBP-1)
32 — ~ 32 - .
-+ —— SBS -4 —— SBS
28 HDBS1 28 HDBS1
24 - —— HDBS2 24 - —— HDBS2
Q. - Q. -
3 20 - ' 5 20 -
$ 16 - $ 16 -
712 712
8 - 8 -
B | | | B | | |
8 16 32 8 16 32
#threads #threads

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)
34

SBS vs. HDBS: Mean Speedup against Single Thread

Minimization of Open Stacks (MOSP) Graph-Clear (building security problem)

32 - 32
- —— SBS - —— SBS
28 - HDBS1 28 ~ HDBS1
24 - —— HDBS2 24 - —— HDBS2
o — Q. —
2 16 7 2 16 -
12 - 12
T | | | L | | |
8 16 32 8 16 32
#threads #threads

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)
35

DIDP vs. Commercial Parallel Optimization Solvers

Problem Description Gurobi CPO DIDP (HDBS2)
TSPTW (340) TSP with time 239/4.2 27/0.1 262/13.3
CVRP (207) vehicle routing 29/5.3 o/ - 8/ 9.3
SALBP-1 (2100) line balancing 1351/1.3 1581/1.4 1826/18.8
Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1239/39.6
MOSP (570) manufacturing 238/3.1 397/0.3 531/ 9.0
Graph-Clear (135) building security 16/2.0 4/3.2 113/10.3

#optimally solved / mean speed up

* Resources: 32 threads, 5-min, and 188GB

« Gurobi: mixed-integer programming solver

« CPO: IBM ILOG CP Optimizer (constraint programming solver)

Conclusion

A parallel beam search algorithm, HDBS2, shows good speedup and
yields a high-performance parallel combinatorial optimization solver

 Start DIDP with Python: pip install didppy

Tutorials and APl References Project Page GitHub Repo

[m] .z [u]

Ohel0 3¢

	スライド 1: Parallel Beam Search Algorithms for Domain-Independent Dynamic Programming
	スライド 2
	スライド 3: Domain-Independent Dynamic Programming (DIDP)
	スライド 4: Example: DP Model for TSP
	スライド 5: Example of DIDP with Python
	スライド 6: Example of DIDP with Python
	スライド 7: Solving DP with Heuristic Search
	スライド 8: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 9: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 10: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 11: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 12: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 13: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 14: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 15: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 16: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 17: CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]
	スライド 18
	スライド 19: Approach 1: Shared Beam Search (SBS)
	スライド 20: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 21: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 22: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 23: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 24: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 25: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 26: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 27: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 28: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 29: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 30: Approach 2: Hash Distributed Beam Search (HDBS)
	スライド 31: HDBS1: Immediate Layer Synchronization
	スライド 32: HDBS2: Delayed Layer Synchronization
	スライド 33
	スライド 34: SBS vs. HDBS: Mean Speedup against Single Thread
	スライド 35: SBS vs. HDBS: Mean Speedup against Single Thread
	スライド 36: DIDP vs. Commercial Parallel Optimization Solvers
	スライド 37: Conclusion

