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Background
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Domain-Independent Dynamic Programming (DIDP)

A user can solve a combinatorial optimization problem by formulating 
a Dynamic Programming (DP) model

compute 𝑉 𝑁 \ {0 , 0)
𝑉 𝑈. 𝑖 = min

𝑗∈𝑈
𝑐𝑖𝑗 + 𝑉(𝑈\ 𝑗 , 𝑗)

𝑉 ∅, 𝑖 = 𝑐𝑖0

Modeling Interface

(Python or YAML)

Combinatorial 

Optimization Problem

DP Model General-Purpose 

DP Solver
Solution
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Current solvers (in Rust) 

use heuristic search

Recently proposed by us [Kuroiwa and Beck 2023b]



Example: DP Model for TSP

• TSP: Minimize the total travel cost to visit all customers and return

• DP: State space representation of the problem
Customers are visited one by one in TSP
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State transition graph for the DP model of TSP

Initial state Goal state



Example of DIDP with Python

5

Define constants and 

state variables

Define transitions 

between states

Define goal conditions

Call a solver



Example of DIDP with Python
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Define transitions 

between states

Call a solver

Contribution of this paper

Define goal conditions

Define constants and 

state variables



Solving DP with Heuristic Search

Solving the DP model by finding a path in the state transition graph
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Initial state Goal

ℎ-value: estimation by a heuristic function 

(given with a DP model in current DIDP)
𝑔-value: actual path cost

𝑓-value: priority to expand, 𝑔 + ℎ
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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Initial state

𝑏 = 2



CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]

• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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𝑏 = 2 9
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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𝑏 = 2 9
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CABS: SOTA DIDP Solver [Kuroiwa and Beck 2023c]



• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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𝑏 = 2 9
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• Beam search expands the 𝑏 states minimizing 𝑓-values in each layer

• Complete Anytime Beam Search (CABS) repeats beam search with 
increasing 𝑏 until finding an optimal solution [Zhang 1998]
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Parallel Beam Search Algorithms
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Approach 1: Shared Beam Search (SBS)

• Expand the best 𝑏 states (obtained by parallel sort) in parallel

• Use a concurrent hash table for duplicate detection
Divided into multiple shards, and each shard has a lock
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key1 value1

key4 value4

key7 value7

… …

key2 value2

key5 value5

key8 value8

… …

key3 value3

key6 value6

key9 value9

… …

Shard 1 Shard 2 Shard 3

Similar to problem-specific parallel beam search by Frohner+ (2023)



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

4
4

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search

4
4

Assigned to a thread

𝑏 = 2, #threads = 2



Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states

22

Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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Approach 2: Hash Distributed Beam Search (HDBS)

• Send a state to a thread determined by its hash value using 
message passing (duplicate states sent to the same thread)

• Each thread locally detects duplicates and expands 
𝑏

#threads
states
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Adaptation of Hash Distributed A* [Kishimoto+ 2013] to beam search
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HDBS1: Immediate Layer Synchronization
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Expand the best states in layer 𝑖

Receive successors in layer 𝑖 + 1 

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 1

Send successors in layer 𝑖 + 1 

Expand the best states in layer 𝑖

Receive successors in layer 𝑖 + 1 

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 2

Send successors in layer 𝑖 + 1 

Synchronize



HDBS2: Delayed Layer Synchronization
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Expand the best states in layer 𝑖

Check if all threads finish layer 𝑖 − 1 

Receive successors in layer 𝑖 + 1 

Notify that layer 𝑖 is finished

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 1

Send successors in layer 𝑖 + 1 

Expand the best states in layer 𝑖

Check if all threads finish layer 𝑖 − 1 

Receive successors in layer 𝑖 + 1 

Notify that layer 𝑖 is finished

Go to the next layer (𝑖 ← 𝑖 + 1)

Thread 2

Send successors in layer 𝑖 + 1 



Experimental Evaluation
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SBS vs. HDBS: Mean Speedup against Single Thread
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TSP with Time Windows (TSPTW) Assembly Line Balancing (SALBP-1)

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)



SBS vs. HDBS: Mean Speedup against Single Thread
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Minimization of Open Stacks (MOSP) Graph-Clear (building security problem)

Used with CABS and measure the time to solve optimally (limits: 5-min and 188GB)



DIDP vs. Commercial Parallel Optimization Solvers 

Problem Description Gurobi CPO DIDP (HDBS2)

TSPTW (340) TSP with time 239/4.2 27/0.1 262/13.3

CVRP (207) vehicle routing 29/5.3 0/    - 8/  9.3

SALBP-1 (2100) line balancing 1351/1.3 1581/1.4 1826/18.8

Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1239/39.6

MOSP (570) manufacturing 238/3.1 397/0.3 531/  9.0

Graph-Clear (135) building security 16/2.0 4/3.2 113/10.3
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#optimally solved / mean speed up

• Resources: 32 threads, 5-min, and 188GB

• Gurobi: mixed-integer programming solver

• CPO: IBM ILOG CP Optimizer (constraint programming solver)



Conclusion

• A parallel beam search algorithm, HDBS2, shows good speedup and 

yields a high-performance parallel combinatorial optimization solver

• Start DIDP with Python: pip install didppy
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