
Large Neighborhood Beam Search for
Domain-Independent Dynamic Programming

Ryo Kuroiwa and J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto

Domain-Independent Dynamic Programming (DIDP)

Talent Scheduling Simple Assembly Line Balancing (SALBP-1)

TSP with Time Windows (TSPTW) Pick-and-Delivery TSP (m-PDTSP)

● x: gap to the best known solution cost scaled from 0 to 1 (with 30 min)
● y: ratio of instances with the primal gap ≤ x
● Upper left is better

Partial path cost

Current
Better

Worse

Diverse => easy to find a better one?

of

 p
ar

tia
l p

at
hs

of

 p
ar

tia
l p

at
hs

Partial path cost

Not diverse => difficult?

● Hypothesis: when partial path costs are not diverse (low entropy),
finding a better solution in a partial state space is difficult

● No much difference in easy problems (the solution length is small)

Routing and Scheduling Problems Other Problems Including SALBP-1

Find an initial solution

Select the length of the partial path d using multi-armed bandit

Select the start of the partial path i by uniform random sampling

Remove the partial path and do beam search with bdi

Double bdi

Time limit
No

1

4

2

0

3

Combinatorial Optimization Dynamic Programming Model

● TSP-like problem to visit all
customers from customer 0
(no return)

● Travel cost from i to j: cij
● Minimize the total travel cost

● Recursive decomposition to subproblems
● Defined by the value function V, which

maps a state (subproblem) to the cost
● Decompose by visiting one customer j and

terminate when all customers are visited

LB function

Original problem

General-Purpose State Space Search Solver

Key difference from tree search: a solution is a path and
multiple paths can lead to the same state (the space is a graph)

Model Solve

{1, 2, 3, 4}, 0

{2, 3, 4}, 1
{2}, 4

{1, 3, 4}, 2

{1, 2, 4}, 3

{1, 2, 3}, 4

{3, 4}, 2

{2, 3}, 4

{2, 4}, 3

{1, 3}, 2

{2, 3}, 1

{1, 2}, 3

{3}, 2

{2}, 3

{4}, 2

{1}, 3

{3}, 1

∅, 2

∅, 4

∅, 3

∅, 1

Visit 1

2

3

4

3

2

4

3

2

1

4

3

3

2

3

1

2

1

4

2

SOTA Solver: CABS [Kuroiwa and Beck 2023]

● Implementation of Complete Anytime Beam Search [Zhang 1998] for DIDP
● Perform beam search with beam width b=1, 2, 4, 8, …
● Beam search keeps only the b states minimizing the f-values in each layer

Why is LNBS Worse in SALBP-1?Experimental Evaluation

f: 15

● g(S): the actual path cost to state S from the original problem
● h(S): the estimated path cost given by the LB function defined in the DP model
● f(S) = g(S) + h(S): the priority in search

b=2

f: 14
f: 10

f: 15

f: 16

f: 15

f: 12

f: 16

f: 15

f: 11

f: 15

f: 14 f: 14

f: 15

{1, 2, 3, 4}, 0

{2, 3, 4}, 1

{1, 3, 4}, 2

{1, 2, 4}, 3

{1, 2, 3}, 4

{3, 4}, 2

{2, 3}, 4

{2, 4}, 3

{1, 3}, 2

{2, 3}, 1

{1, 2}, 3

{2}, 3

{3}, 2

∅, 2

∅, 3
f: 13

The best solution: (4, 1, 2, 3)

Large Neighborhood Beam Search
Remove a partial path from a solution and search for a better one

i=2
d=2

{1, 2, 3, 4}, 0 {2, 3, 4}, 1 {4}, 3{3, 4}, 2 ∅, 4

Beam search in a partial state space

Remove a partial path (2, 3)

Overview of Large Neighborhood Beam Search (LNBS)

CP-like model & solve paradigm having a Python interface (tutorials, examples, and API reference https://didppy.rtfd.io)

https://didppy.rtfd.io

