# Large Neighborhood Beam Search for Domain-Independent Dynamic Programming 

Ryo Kuroiwa and J. Christopher Beck<br>Toronto Intelligent Decision Engineering Laboratory (TIDEL)<br>Department of Mechanical and Industrial Engineering<br>University of Toronto

## Background

## Domain-Independent Dynamic Programming (DIDP)

CP-like model \& solve paradigm based on dynamic programming (DP)

Combinatorial optimization problem

State-based DP model


DIDP solver


Current solvers use state space search

## DIDP Sample Code

```
import didppy as dp
model = dp.Model()
customer = model.add_object_type(number=4)
unvisited = model.add_set_var(object_type=customer, target=[1, 2, 3])
location = model.add_element_var(object_type=customer, target=0)
travel time = model.add int table(
    [[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]]
for j in range(1, 4):
    visit = dp.Transition(
        name="visit {}".format(j),
        cost=travel_time[location, j] + dp.IntExpr.state_cost(),
        effects=[(unvisited, unvisited.remove(j)), (location, j)],
        preconditions=[unvisited.contains(j)],
    )
    model.add_transition(visit)
return_to = dp.Transition(
    name="return"
    cost=travel_time[location, 0] + dp.IntExpr.state_cost(),
    effects=[(location, 0)]
    preconditions=[unvisited.is_empty(), location != 0],
model.add_transition(return_to)
model.add_base_case([unvisited.is_empty(), location == 0])
solver = dp.CAASDy(model)
solution = solver.search()
```



## Example 1: a TSP-Like Routing Problem

Visit all nodes starting from customer 0 (no need to return) while minimizing the total travel cost (visiting $j$ from $i$ requires cost $c_{i j}$ )


## DP Model for the Example Problem

Recursive decomposition into subproblems by visiting one customer


## DP Model for the Example Problem

Recursively defined value function $V$ maps a state (subproblem), defined by unvisited customers $U$ and the current customer $i$, to the cost
compute $V(\{1,2,3,4\}, 0)$
$V(U, i)=\left\{\begin{array}{lll}\min _{j \in U} c_{i j}+V(U \backslash\{j\}, j) & \text { if } U \neq \emptyset & \text { Transition (visiting one customer) } \\ 0 & \text { if } U=\emptyset & \text { Base case (all customers are visited) }\end{array}\right.$
$V(U, i) \geq h(U, i)$

Target state (original problem)

## Dual bound function



## DP Model for the Example Problem

Recursively defined value function $V$ maps a state (subproblem), defined by unvisited customers $U$ and the current customer $i$, to the cost

$$
\begin{aligned}
& \hline \text { compute } V(\{1,2,3,4\}, 0) \\
& V(U, i)=\left\{\begin{array}{lll}
\min _{j \in U} c_{i j}+V(U \backslash\{j\}, j) & \text { if } U \neq \emptyset & \text { Tranget state (original problem) } \\
0 & \text { if } U=\emptyset & \text { Base case (all customers are visited) } \\
V(U, i) \geq h(U, i) & & \text { Dual bound function }
\end{array}\right. \\
&
\end{aligned}
$$



## DP Model for the Example Problem

Recursively defined value function $V$ maps a state (subproblem), defined by unvisited customers $U$ and the current customer $i$, to the cost
compute $V(\{1,2,3,4\}, 0) \quad$ Target state (original problem)

$V(U, i) \geq h(U, i)$
Dual bound function


## DP Model for the Example Problem

Recursively defined value function $V$ maps a state (subproblem), defined by unvisited customers $U$ and the current customer $i$, to the cost
compute $V(\{1,2,3,4\}, 0) \quad$ Target state (original problem)
$V(U, i)=\left\{\begin{array}{lll}\min _{j \in U} c_{i j}+V(U \backslash\{j\}, j) & \text { if } U \neq \emptyset & \text { Transition (visiting one customer) } \\ 0 & \text { if } U=\emptyset & \text { Base case (all customers are visited) }\end{array}\right.$
$V(U, i) \geq h(U, i)$
Dual bound function


## DP Model for the Example Problem

Recursively defined value function $V$ maps a state (subproblem), defined by unvisited customers $U$ and the current customer $i$, to the cost

$$
\text { compute } V(\{1,2,3,4\}, 0) \quad \text { Target state (original problem) }
$$

$V(U, i)=\left\{\begin{array}{lll}\min _{j \in U} c_{i j}+V(U \backslash\{j\}, j) & \text { if } U \neq \emptyset & \text { Transition (visiting one customer) } \\ 0 & \text { if } U=\emptyset & \text { Base case (all customers are visited) }\end{array}\right.$
$V(U, i) \geq h(U, i) \quad$ Dual bound function


## DP as State Space Search

- $V(S)$ : the shortest path cost from $S$ to a base case in a state space
- Solution: a path from the target state



## DP as State Space Search

Different paths can lead to the same state => store states in memory


## Heuristic Search for DIDP

Guide the search using $f(S)=g(S)+h(S)$ (LB on the path cost via $S$ )


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer
Beam width: $b=2$

Target state
$\{1,2,3,4\}, 0$ f: 10

## Beam Search

Keep the best $b$ states according to the $f$-value in each layer
Beam width: $b=2$

Target state
$\{1,2,3,4\}, 0] f: 10$

## Beam Search

Keep the best $b$ states according to the $f$-value in each layer
Beam width: $b=2$


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer
Beam width: $b=2$


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## Beam Search

Keep the best $b$ states according to the $f$-value in each layer


## SOTA: Complete Anytime Beam Search (CABS)

- Beam search with $b=1,2,4,8, \ldots$, until exhausting the state space
- Prune a state $S$ if $f(S) \geq$ the incumbent solution cost



## Large Neighborhood Beam Search

## Large Neighborhood Search (LNS)

LNS for CP: remove value assignments to some variables from a solution and perform tree search to find a better solution

Current solution: $x=1, y=0, z=0, w=0$
Removed assignments: $z=0, w=0$

$$
z=0 \quad x=1, y=0 \quad z=1
$$



## LNS for DIDP

Remove a partial path and search in a partial state space
Current: (1, 2, 3, 4)


Better: (1, 3, 2, 4)


## Large Neighborhood Beam Search (LNBS)



## Multi-Armed Bandit-Based Length Selection

How many transitions to remove given the remaining time 0.8 ?


## Start Selection

Given length $d$, sample start $i$ uniformly at random


## Beam Width Selection

Double beam width $b_{d i}$ for length $d$ and start $i$ after each beam search starting from $b_{d i}=1$


## Beam Width Selection

- Reset $b_{d i}$ to 1 if the partial state space changes
- Prove optimality if $i=1, d$ is the solution length, and $b$ is large enough



## Experimental Evaluation

## Distribution of Primal Gap in Routing Problems

Primal gap: relative gap to the best known solution (smaller is better) achieved with 30 min

TSP with Time Windows (TSPTW)



## Distribution of Primal Gap in Scheduling Problems

Primal gap: relative gap to the best known solution (smaller is better) achieved with 30 min

Single Machine Total Weighted Tardiness


Talent Scheduling


## Distribution of Primal Gap in Other Problems

Primal gap: relative gap to the best known solution (smaller is better) achieved with 30 min

Simple Assembly Line Balancing (SALBP-1)


Minimization of Open Stacks (MOSP)


## Why LNBS is Worse in Some Problems?

Diverse => easy to find a better one?



Not diverse => difficult?



## Why LNBS is Worse in Some Problems?

- Hypothesis: when partial path costs are not diverse (low entropy), finding a better solution in a partial state space is difficult
- Not much difference if a problem is easy (the solution length is small)

Routing and scheduling problems


Other problems


## Conclusion

- DIDP: a model \& solve paradigm based on DP
- LNBS is effective particularly in routing and scheduling problems such as TSPTW, m-PDTSP, and talent scheduling, which seems to be related to the diversity of partial path costs
- Start DIDP with Python: pip install didppy Tutorials and API Reference: https://didppy.rtfd.io



## Beam Width Selection

Double beam width $b_{d i}$ for length $d$ and start $i$ after each beam search starting from $b_{d i}=1$


## Definition of Entropy

$H(Y)=\sum_{c \in C} \frac{\left|\left\{y \in Y \mid \operatorname{cost}_{y}=c\right\}\right|}{|Y|} \log _{2} \frac{\left|\left\{y \in Y \mid \operatorname{cost}_{y}=c\right\}\right|}{|Y|}$
$Y$ : set of partial paths
$C$ : set of partial path costs
We enumerate all feasible prefixes for an initial solution where first eight transitions are removed

