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Background
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CP-like model & solve paradigm based on dynamic programming (DP)

Domain-Independent Dynamic Programming  (DIDP)

3

Combinatorial 
optimization problem State-based DP model DIDP solver

Model Solve

Kuroiwa and Beck ICAPS 2023a,b

Current solvers use 
state space search



DIDP Sample Code

4Visit https://didppy.rtfd.io

https://didppy.rtfd.io


Example 1: a TSP-Like Routing Problem
Visit all nodes starting from customer 0 (no need to return) while 
minimizing the total travel cost (visiting j from i requires cost cij)
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DP Model for the Example Problem
Recursive decomposition into subproblems by visiting one customer
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DP Model for the Example Problem
Recursively defined value function V maps a state (subproblem), 
defined by unvisited customers U and the current customer i, to the cost
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Dual bound function
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● V(S): the shortest path cost from S to a base case in a state space
● Solution: a path from the target state

DP as State Space Search
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Different paths can lead to the same state => store states in memory

DP as State Space Search
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Guide the search using f(S) = g(S) + h(S) (LB on the path cost via S)

Heuristic Search for DIDP
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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Keep the best b states according to the f-value in each layer

Beam Search
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SOTA: Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, …, until exhausting the state space
● Prune a state S if f(S) ≥ the incumbent solution cost

27Zhang 1998; Kuroiwa and Beck ICAPS 2023b
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Large Neighborhood Beam Search
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Large Neighborhood Search (LNS)
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LNS for CP: remove value assignments to some variables from a 
solution and perform tree search to find a better solution

Current solution: x = 1, y = 0, z = 0, w = 0
Removed assignments: z = 0, w = 0
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LNS for DIDP
Remove a partial path and search in a partial state space

Current: (1, 2, 3, 4)

Removed: (2, 3)
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Visit 2 Visit 3Visit 1 Visit 4

{1, 2, 3, 4}, 0 {2, 3, 4}, 1 ? ∅, 4
Visit 1 Visit 4

Better: (1, 3, 2, 4)
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Large Neighborhood Beam Search (LNBS)
Find an initial solution

Select the length of the partial path d 

Select the start of the partial path i

Select beam width b

Remove the partial path and do beam search with b

Time limit
No

i=2
d=2
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How many transitions to remove given the remaining time 0.8?

Cost improvement (reward) 
Time 

Multi-Armed Bandit-Based Length Selection 

Average cost improvement: 0.5
Average time: 0.01
# of times d = 2 used: 10

Cost improvement (reward) 
Time 
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=> Use Budgeted-UCB [Xia et al. 2015] to decide

Average cost improvement: 0.8
Average time: 0.02
# of times d = 4 used: 5

length d = 2 (arm) length d = 4 (arm)

Random
variables



Start Selection
Given length d, sample start i uniformly at random
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Beam Width Selection
Double beam width bdi for length d and start i after each beam search 
starting from bdi=1
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Beam Width Selection
● Reset bdi to 1 if the partial state space changes
● Prove optimality if i=1, d is the solution length, and b is large enough
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Experimental Evaluation
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Distribution of Primal Gap in Routing Problems
Primal gap: relative gap to the best known solution (smaller is better) 
achieved with 30 min
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TSP with Time Windows (TSPTW) Pick-and-Delivery TSP (m-PDTSP)



Distribution of Primal Gap in Scheduling Problems
Primal gap: relative gap to the best known solution (smaller is better) 
achieved with 30 min

38

Single Machine Total Weighted Tardiness Talent Scheduling



Distribution of Primal Gap in Other Problems
Primal gap: relative gap to the best known solution (smaller is better) 
achieved with 30 min
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Simple Assembly Line Balancing (SALBP-1) Minimization of Open Stacks (MOSP)



Why LNBS is Worse in Some Problems?
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Diverse => easy to find a better one? Not diverse => difficult?

Partial path cost
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Why LNBS is Worse in Some Problems?
● Hypothesis: when partial path costs are not diverse (low entropy), 

finding a better solution in a partial state space is difficult
● Not much difference if a problem is easy (the solution length is small)
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Routing and scheduling problems Other problems



Conclusion

● DIDP: a model & solve paradigm based on DP

● LNBS is effective particularly in routing and scheduling problems 
such as TSPTW, m-PDTSP, and talent scheduling, which seems to 
be related to the diversity of partial path costs

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io
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https://didppy.rtfd.io


Beam Width Selection
Double beam width bdi for length d and start i after each beam search 
starting from bdi=1
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Definition of Entropy

 

    : set of partial paths
    : set of partial path costs

We enumerate all feasible prefixes for an initial solution where first eight 
transitions are removed
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