Domain-Independent Dynamic Programming

Ryo Kuroiwa and J. Christopher Beck Department of Mechanical and Industrial Engineering, University of Toronto

Research Question

Can we use dynamic programming as a model-based paradigm for combinatorial optimization?

Developed Software

Use our software to solve your problem by just defining a DP model! We developed general-purpose heuristic search solvers!

Install the Python interface: pip install didppy

Open-source and free for commercial use (MIT/Apache-2.0).

Project page

Tutorials, examples, and API reference

DP Model for TSPTW

Modeling and Solving in DIDP

import didppy as dp

```
model = dp.Model(maximize=False)
```

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```

u = model.add_set_var(object_type=customer, target=[1, 2, 3]) i = model.add_element_var(object_type=customer, target=0) t = model.add_int_resource_var(target=0, less_is_better=True)

```
for j in range(1, 4):
   visit = dp.Transition(
       name="visit {}".format(j),
       cost=c[i, j] + dp.IntExpr.state cost(),
       effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
       preconditions=[u.contains(j), t + c[i, j] <= b[j]],</pre>
```

compute $V(N \setminus \{0\}, 0, 0)$

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0}} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\ \text{else if } i \neq 0 \\ \text{otherwise} \end{cases}$$

State variables:

• U: unvisited customers

- *i* : current customer
- t : current time

Constants

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer *i* to *j*

model.add_transition(visit)

```
return to depot = dp.Transition(
   name="return",
   cost=c[i, 0] + dp.IntExpr.state_cost(),
   effects = [(i, 0), (t, t + c[i, 0])],
   preconditions=[u.is_empty(), i != 0],
```

model.add_transition(return_to_depot)

```
model.add base case([u.is_empty(), i == 0], cost=0)
```

```
for j in range(1, 4):
    model.add state constr(~u.contains(j) | (t + c[i, j] <= b[j]))</pre>
```

```
model.add_dual_bound(0)
```

```
solver = dp.CABS(model)
solution = solver.search()
```

What DIDP Can Do but PDDL Cannot

Explicitly modeling implications of the problem definition that can be useful solvers (common in OR!).

State constraints (can be used for pruning) $V(U, i, t) = \infty$ if $\exists j \in U, t + c_{ij} > b_j$

for j in range(1, 4): model.add_state_constr(~u.contains(j) | (t + c[i, j] <= b[j]))</pre>

Dominance with **resource variables** (can be used for pruning) $V(U, i, t) \leq V(U, i, t')$ if $t \leq t'$

t = model.add int resource var(target=0, less is better=True)

Dual bound (can be used as a heuristic) $V(U, i, t) \ge 0$

model.add_dual_bound(0)

Heuristic Search Solvers		Description	MIP	CP	CAASDy	CABS
	TSPTW (340)	TSP with time	227/0.227	47/0.026	257/0.244	259/0.003
Heuristic search solves a DP model as a shortest path	CVRP (207)	vehicle routing	<mark>26</mark> /0.585	0/0.317	5/0.976	6/ <mark>0.185</mark>
problem in a state space using the dual bound as a heuristic.	SALBP-1 (2100)	assembly line	1357/0.345	1584/0.005	1653/0.213	1801/0.000
We developed the following solvers:	Bin Packing (1615)	bin packing	1157/0.039	1234/0.002	922/0.429	1163/ <mark>0.002</mark>
 CAASDy: A*. 	MOSP (570)	manufacturing	225/0.039	437/0.004	483/0.153	527/0.000
• CABS: performs beam search with exponentially increasing	Graph-Clear (135)	building security	24/0.110	4/0.015	76/0.437	103/0.000
beam width (anytime and complete).	Talent Scheduling (1000)	scheduling actors	6/0.051	7/ <mark>0.002</mark>	224/0.793	253 /0.011
 5 other anytime heuristic search solvers. 	m-PDTSP (1117)	pick up & delivery	945/0.078	1049 /0.013	947/0.196	1035/ <mark>0.002</mark>
Promising performance compared to MIP and CP.	$1 \ \sum w_i T_i$ (375)	job scheduling	109/0.018	150/ <mark>0.000</mark>	270/0.280	<mark>285</mark> /0.034
Future work: parallelization, domain-independent dual bound	Coverage / prir	nal gap (gap to the bes	st known cost)	achieved withir	n 8GB and 30-r	nin.