Domain-Independent Dynamic Programming

Ryo Kuroiwa and J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto

Research Question
Can we use dynamic programming as a model-based paradigm for combinatorial optimization?

Developed Software
Use our software to solve your problem by just defining a DP model!
We developed general-purpose heuristic search solvers!
Install the Python interface: pip install didppy
Open-source and free for commercial use (MIT/Apache-2.0).

TSPTW Example
Minimize the travel time of a tour to visit all customers within the time windows.

DP Model for TSPTW
\[V(N \setminus \{0\}, 0, 0) = \min_{\sum j \in U \setminus \{0\}, c_{ij} \leq b_j} \left(\begin{array}{c} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) \text{ if } U \neq \emptyset \\ \alpha_0 + V(\emptyset, 0, 0 + t + c_{ao}) \\ 0 \end{array} \right) \]

State variables:
- \(U \): unvisited customers
- \(i \): current customer
- \(t \): current time

Constants
- \(N \): all customers (0: depot)
- \(a_i, b_i \): time window for customer \(i \)
- \(c_{ij} \): travel time from customer \(i \) to \(j \)

What DIDP Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition that can be useful solvers (common in OR!).
State constraints (can be used for pruning)
\[V(U, i, t) = \infty \text{ if } \exists j \in U, t + c_{ij} > b_j \]

Dominance with resource variables (can be used for pruning)
\[V(U, i, t) \leq V(U, i, t') \text{ if } t' \leq t \]

Dual bound (can be used as a heuristic)
\[V(U, i, t) \geq 0 \]

Modeling and Solving in DIDP

Heuristic Search Solvers
Heuristic search solves a DP model as a shortest path problem in a state space using the dual bound as a heuristic.

We developed the following solvers:
- CAASDy: A*.
- CABS: performs beam search with exponentially increasing beam width (anytime and complete).
- 5 other anytime heuristic search solvers.

Promising performance compared to MIP and CP.

Future work: parallelization, domain-independent dual bound.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>MIP</th>
<th>CP</th>
<th>CAASDy</th>
<th>CABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSPTW (340)</td>
<td>TSP with time</td>
<td>227/0.227</td>
<td>47/0.026</td>
<td>257/0.244</td>
<td>259/0.003</td>
</tr>
<tr>
<td>CVRP (207)</td>
<td>Vehicle routing</td>
<td>26/0.585</td>
<td>0/0.317</td>
<td>50/0.976</td>
<td>6/0.185</td>
</tr>
<tr>
<td>SALBP-1 (2100)</td>
<td>Assembly line</td>
<td>1357/0.345</td>
<td>1584/0.005</td>
<td>1653/0.213</td>
<td>1801/0.000</td>
</tr>
<tr>
<td>Bin Packing (1615)</td>
<td>Bin packing</td>
<td>1157/0.039</td>
<td>1234/0.002</td>
<td>922/0.429</td>
<td>1163/0.002</td>
</tr>
<tr>
<td>MOSP (570)</td>
<td>Manufacturing</td>
<td>225/0.039</td>
<td>437/0.004</td>
<td>483/0.153</td>
<td>527/0.000</td>
</tr>
<tr>
<td>Graph-Clear (135)</td>
<td>Building security</td>
<td>24/0.110</td>
<td>4/0.015</td>
<td>760/4.357</td>
<td>1030/0.000</td>
</tr>
<tr>
<td>Talent Scheduling (1000)</td>
<td>Scheduling actors</td>
<td>6/0.051</td>
<td>7/0.002</td>
<td>224/0.793</td>
<td>253/0.011</td>
</tr>
<tr>
<td>m-PDTS (1117)</td>
<td>Pick up & delivery</td>
<td>945/0.078</td>
<td>1049/0.013</td>
<td>947/0.196</td>
<td>1035/0.002</td>
</tr>
<tr>
<td>1/\sum_{i,j} T_i (375)</td>
<td>Job scheduling</td>
<td>109/0.018</td>
<td>15/0.000</td>
<td>270/0.280</td>
<td>285/0.034</td>
</tr>
</tbody>
</table>

Coverage / primal gap (gap to the best known cost) achieved within 8GB and 30-min.