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Domain-Independent Planning
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A

B C

(define (domain BLOCKS)
  (:predicates (on ?x ?y)
               (ontable ?x)
               (clear ?x)
               (handempty)
               (holding ?x)
               )

  (:action pick-up
............................
............................

Any planning problem State-based PDDL model AI planner

Model Solve

Heuristic search
is popular



Domain-Independent Dynamic Programming (DIDP)

What We Propose: DIDP
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Any combinatorial 
optimization problem

State-based DP model DIDP solver

Model Solve

Current solvers are based 
on heuristic search



Our Modeling Interfaces
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YAML (PDDL-like) Python libraryor



Background
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Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

6

1

2

3

0Depot

3

[5, 16] [8, 14]

3

4

4
[0, 10]

55



Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

7

1

2

3

0Depot [0, 10]

3

[5, 16] [8, 14]

3

4

4

Total cost: 14

t=8 (wait until 8)

t=4t=0

t=12

55



DP for Combinatorial Optimization
State-based model: visit customers one by one
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Recursive equations of a value function of a state

State variables:
●     : unvisited customers
●   : current customer
●   : current time

●     : all customers (0: depot)
●           : time window for customer 
●      : travel time from customer   to 

DP for Combinatorial Optimization

Visit a customer 

Return to the depot
Base case
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Solved by problem-specific algorithm implementations before DIDP



Our Modeling Formalism: DyPDL
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State Variables
● Types: set, element, numeric
● Objective: compute the value of the target state (initial state)

Variable Type Domain Target

set

element

numeric
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Transitions
● Define recursive equations by state transitions (actions)
● Value of a state: the minimum over all applicable transitions
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Transition to visit a customer j Expression

Cost expression and effects

Preconditions to apply

Next state Next stateNext state… …

Applicable transitions
Minimum

State



● Conditions to stop recursion (goal conditions)
● Value of a satisfying state: defined non-recursively

Base Cases
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What DyPDL Can Do but PDDL Cannot
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What DyPDL Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition
(very useful and common in OR!)
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Dominance based on resource variables
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Dominance based on resource variables Dual bound (LB in minimization)
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Dominance based on resource variables Dual bound (LB in minimization)

Other features skipped in this talk:
● State constraints
● Forced transitions



Our DIDP Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model
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Experimental Results
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Problem Description MIP (Gurobi) CP (CP Optimizer) DIDP

TSPTW (340) TSP with time 227 47 257

CVRP (207) vehicle routing 26 0 5

SALBP-1 (2100) assembly line 1357 1584 1653

Bin Packing (1615) bin packing 1157 1234 922

MOSP (570) manufacturing 225 437 483

Graph-Clear (135) building security 24 4 76

# of optimality solved instances with 8GB and 30-min



Future Work
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We need your ideas to advance DIDP!

● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

● Start DIDP with YAML: cargo install didp-yaml

● Clone the repository:
git clone https://github.com/domain-independent-dp/didp-rs
Everything in Rust

https://didp.ai
https://didppy.rtfd.io
https://github.com/domain-independent-dp/didp-rs


Time vs. Coverage (Mean over All Problems)
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