
Domain-Independent Dynamic Programming:
Generic State Space Search for

Combinatorial Optimization

Ryo Kuroiwa and J. Christopher Beck
Toronto Intelligent Decision Engineering Laboratory (TIDEL)

Department of Mechanical and Industrial Engineering
University of Toronto

Domain-Independent Planning

2

A

B C

(define (domain BLOCKS)
 (:predicates (on ?x ?y)
 (ontable ?x)
 (clear ?x)
 (handempty)
 (holding ?x)
)

 (:action pick-up
............................
............................

Any planning problem State-based PDDL model AI planner

Model Solve

Heuristic search
is popular

Domain-Independent Dynamic Programming (DIDP)

What We Propose: DIDP

3

Any combinatorial
optimization problem

State-based DP model DIDP solver

Model Solve

Current solvers are based
on heuristic search

Our Modeling Interfaces

4

YAML (PDDL-like) Python libraryor

Background

5

Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

6

1

2

3

0Depot

3

[5, 16] [8, 14]

3

4

4
[0, 10]

55

Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

7

1

2

3

0Depot [0, 10]

3

[5, 16] [8, 14]

3

4

4

Total cost: 14

t=8 (wait until 8)

t=4t=0

t=12

55

DP for Combinatorial Optimization
State-based model: visit customers one by one

8

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

9

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

10

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

11

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

12

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

13

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

14

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

15

Recursive equations of a value function of a state

State variables:
● : unvisited customers
● : current customer
● : current time

● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

16

Solved by problem-specific algorithm implementations before DIDP

Our Modeling Formalism: DyPDL

17

State Variables
● Types: set, element, numeric
● Objective: compute the value of the target state (initial state)

Variable Type Domain Target

set

element

numeric

18

Transitions
● Define recursive equations by state transitions (actions)
● Value of a state: the minimum over all applicable transitions

19

Transition to visit a customer j Expression

Cost expression and effects

Preconditions to apply

Next state Next stateNext state… …

Applicable transitions
Minimum

State

● Conditions to stop recursion (goal conditions)
● Value of a satisfying state: defined non-recursively

Base Cases

20

1

2

3

0

What DyPDL Can Do but PDDL Cannot

21

What DyPDL Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition
(very useful and common in OR!)

22

What DyPDL Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition
(very useful and common in OR!)

23

Dominance based on resource variables

What DyPDL Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition
(very useful and common in OR!)

24

Dominance based on resource variables Dual bound (LB in minimization)

What DyPDL Can Do but PDDL Cannot
Explicitly modeling implications of the problem definition
(very useful and common in OR!)

25

Dominance based on resource variables Dual bound (LB in minimization)

Other features skipped in this talk:
● State constraints
● Forced transitions

Our DIDP Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model

26

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

Target state

Base case
Dominated

✗

Experimental Results

27

Problem Description MIP (Gurobi) CP (CP Optimizer) DIDP

TSPTW (340) TSP with time 227 47 257

CVRP (207) vehicle routing 26 0 5

SALBP-1 (2100) assembly line 1357 1584 1653

Bin Packing (1615) bin packing 1157 1234 922

MOSP (570) manufacturing 225 437 483

Graph-Clear (135) building security 24 4 76

of optimality solved instances with 8GB and 30-min

Future Work

28

We need your ideas to advance DIDP!

● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

● Start DIDP with YAML: cargo install didp-yaml

● Clone the repository:
git clone https://github.com/domain-independent-dp/didp-rs
Everything in Rust

https://didp.ai
https://didppy.rtfd.io
https://github.com/domain-independent-dp/didp-rs

Time vs. Coverage (Mean over All Problems)

29

C
ov

er
ag

e
ra

tio

Time in seconds

CP

DIDP

MIP

