Domain-Independent Dynamic Programming: Generic State Space Search for Combinatorial Optimization

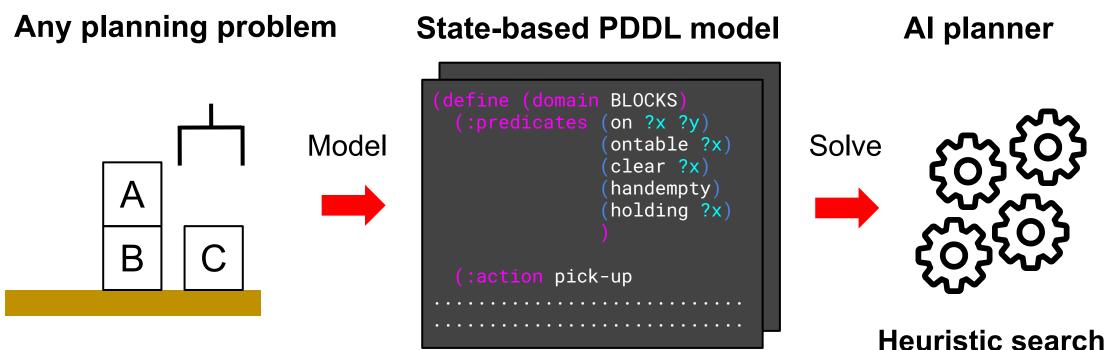
Ryo Kuroiwa and J. Christopher Beck

Toronto Intelligent Decision Engineering Laboratory (TIDEL) Department of Mechanical and Industrial Engineering University of Toronto





#### **Domain-Independent Planning**



is popular

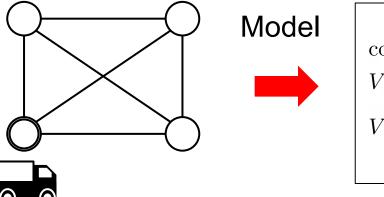
### What We Propose: DIDP

Domain-Independent Dynamic Programming (DIDP)

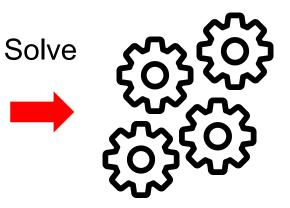
Any combinatorial optimization problem

**State-based DP model** 

**DIDP solver** 



compute 
$$V(N \setminus \{0\}, 0)$$
  
 $V(U, i) = \min_{j \in U} c_{ij} + V(U \setminus \{i\}, j)$   
 $V(\emptyset, i) = c_{i0}.$ 



Current solvers are based on **heuristic search** 

### **Our Modeling Interfaces**

#### YAML (PDDL-like)

```
or
```

#### objects:

```
- customer
state variables:
  - { name: unvisited, type: set, object: customer }
 - { name: location, type: element, object: customer }
tables:
  - name: travel time
    type: integer
   args: [customer, customer]
transitions:
  - name: visit
   parameters: { name: j, object: unvisited }
   cost: (+ cost (travel time location j))
   effect:
     unvisited: (remove j unvisited)
      location: j
  - name: return
    cost: (travel time location 0)
   effect:
      location: 0
   preconditions:
      - (is empty unvisited)
      - (!= location 0)
base cases:
  - conditions:
      - (is empty unvisited)
      - (= location 0)
```

#### **Python library**

#### import didppy as dp

```
model = dp.Model()
customer = model.add_object_type(number=4)
unvisited = model.add_set_var(object_type=customer, target=[1, 2, 3])
location = model.add_element_var(object_type=customer, target=0)
travel_time = model.add_int_table(
       [[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]]
```

```
for j in range(1, 4):
    visit = dp.Transition(
        name="visit {}".format(j),
```

cost=travel\_time[location, j] + dp.IntExpr.state\_cost(), effects=[(unvisited, unvisited.remove(j)), (location, j)], preconditions=[unvisited.contains(j)],

```
model.add_transition(visit)
```

```
return_to = dp.Transition(
    name="return",
    cost=travel_time[location, 0] + dp.IntExpr.state_cost(),
    effects=[(location, 0)],
    preconditions=[unvisited.is empty(), location != 0],
```

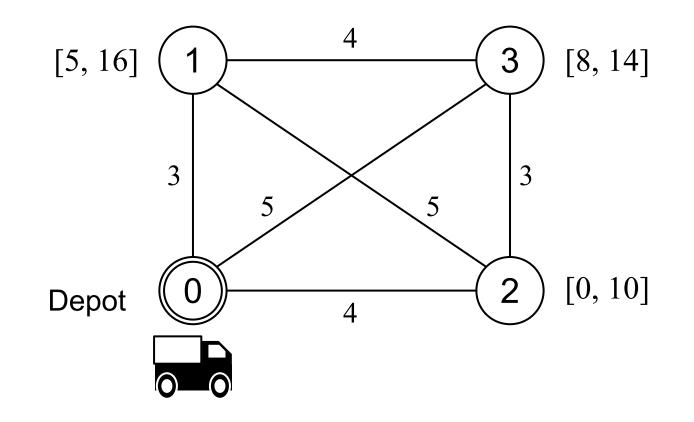
```
model.add_transition(return_to)
model.add_base_case([unvisited.is_empty(), location == 0])
```

```
solver = dp.CAASDy(model)
solution = solver.search()
```

# Background

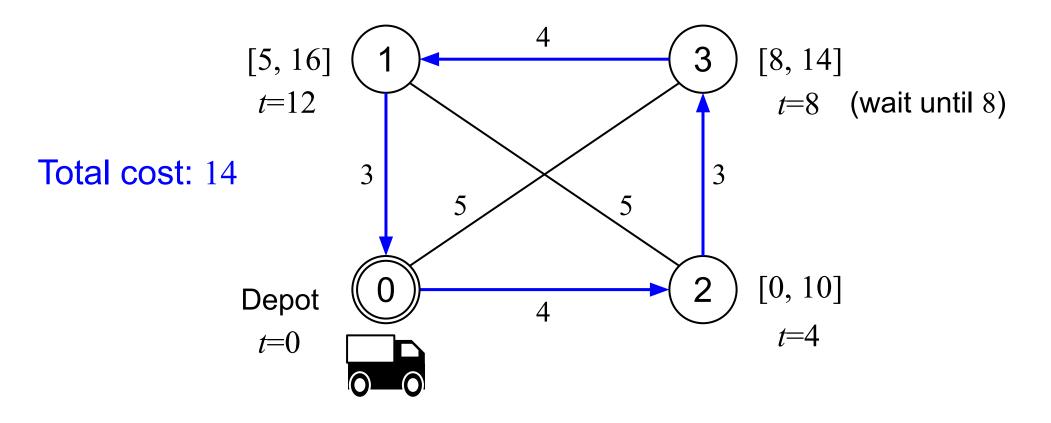
#### **Combinatorial Optimization**

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows

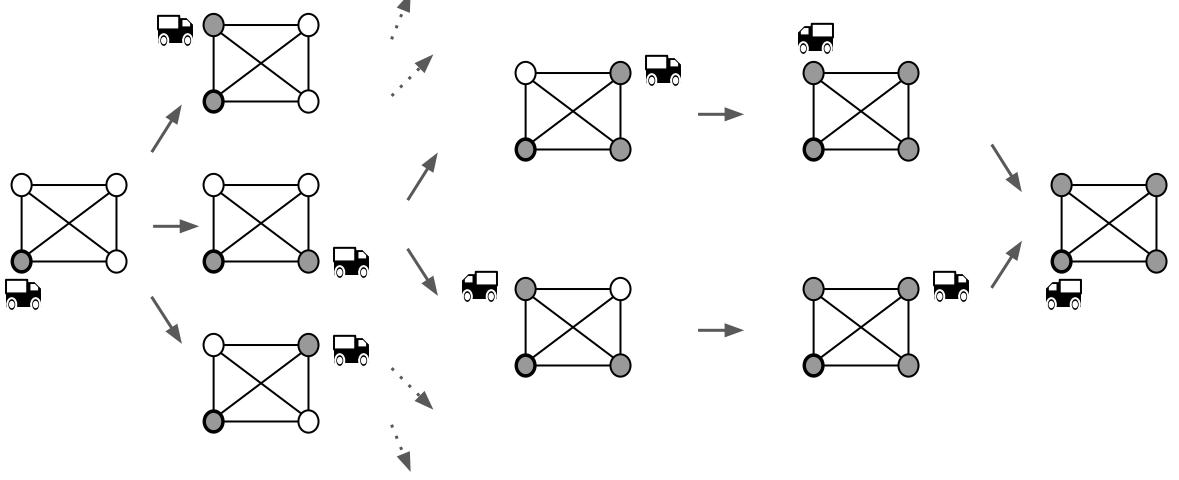


#### **Combinatorial Optimization**

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows



State-based model: visit customers one by one



#### Recursive equations of a value function of a state

compute 
$$V(N \setminus \{0\}, 0, 0)$$
  

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \le b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

compute 
$$V(N \setminus \{0\}, 0, 0)$$
  

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

Recursive equations of a value function of a state

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \le b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

 $I_{I}(\mathbf{N}_{I})$  (0) 0 0)

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

#### compute $V(N \setminus \{0\}, 0, 0)$ $V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0 & \text{otherwise}} \end{cases}$ Visit a customer Return to the depot Base case

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

compute 
$$V(N \setminus \{0\}, 0, 0)$$
  

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0 & \text{otherwise}} \end{cases} \text{ if } U \neq \emptyset \qquad \text{Visit a customer} \\ \text{else if } i \neq 0 \\ \text{otherwise} & \text{Base case} \end{cases}$$

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

compute 
$$V(N \setminus \{0\}, 0, 0)$$
  

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 & \text{Return to the depot} \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Recursive equations of a value function of a state

compute 
$$V(N \setminus \{0\}, 0, 0)$$
  

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$ : time window for customer i
- $c_{ij}$ : travel time from customer i to j

#### Solved by problem-specific algorithm implementations before DIDP

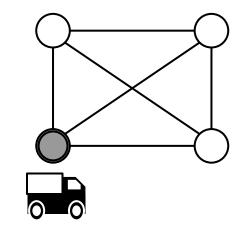
# Our Modeling Formalism: DyPDL

#### **State Variables**

- Types: set, element, numeric
- Objective: compute the value of the **target state** (initial state)

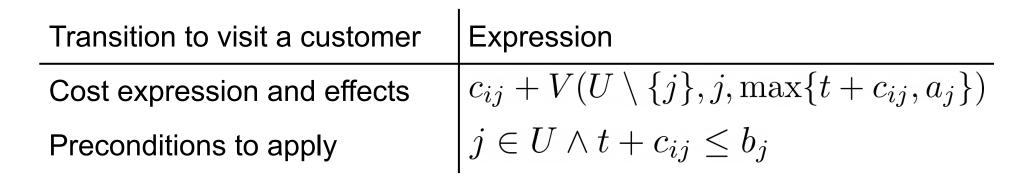
| Variable | Туре    | Domain                 | Target              |
|----------|---------|------------------------|---------------------|
| U        | set     | $U \subseteq N$        | $N \setminus \{0\}$ |
| i        | element | $i \in N$              | 0                   |
| t        | numeric | $t \in \mathbb{Z}_0^+$ | 0                   |

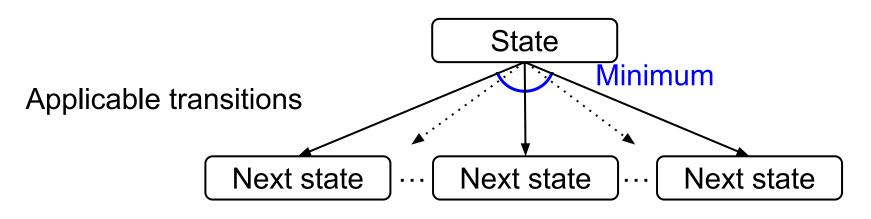
compute  $V(N \setminus \{0\}, 0, 0)$ 



#### Transitions

- Define recursive equations by state transitions (actions)
- Value of a state: the minimum over all applicable transitions

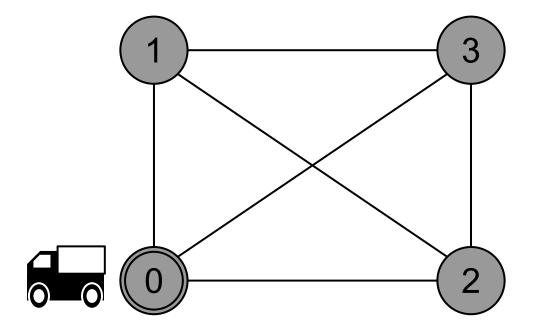




#### **Base Cases**

- Conditions to stop recursion (goal conditions)
- Value of a satisfying state: defined non-recursively

$$U = \emptyset \land i = 0 \to V(U, i, t) = 0$$



**Explicitly modeling implications** of the problem definition (very useful and common in OR!)

**Explicitly modeling implications** of the problem definition (very useful and common in OR!)

Dominance based on resource variables

 $V(U, i, t) \leq V(U, i, t')$  if  $t \leq t'$ 

**Explicitly modeling implications** of the problem definition (very useful and common in OR!)

Dominance based on **resource variables** 

 $V(U, i, t) \le V(U, i, t') \text{ if } t \le t'$ 

**Dual bound** (LB in minimization)

$$V(U, i, t) \ge 0$$

**Explicitly modeling implications** of the problem definition (very useful and common in OR!)

Dominance based on **resource variables** 

$$V(U, i, t) \leq V(U, i, t')$$
 if  $t \leq t'$ 

Other features skipped in this talk:

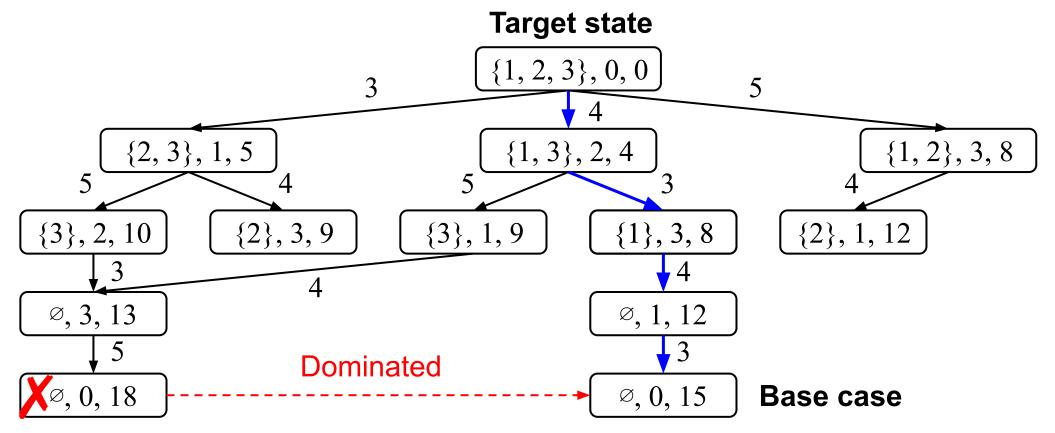
- State constraints
- Forced transitions

**Dual bound** (LB in minimization)

$$V(U, i, t) \ge 0$$

### Our DIDP Solver: CAASDy

- Solve DP as a shortest path in the state space using A\*
- Heuristic: dual bound defined in a DP model



#### **Experimental Results**

| Problem            | Description       | MIP (Gurobi) | CP (CP Optimizer) | DIDP |
|--------------------|-------------------|--------------|-------------------|------|
| TSPTW (340)        | TSP with time     | 227          | 47                | 257  |
| CVRP (207)         | vehicle routing   | 26           | 0                 | 5    |
| SALBP-1 (2100)     | assembly line     | 1357         | 1584              | 1653 |
| Bin Packing (1615) | bin packing       | 1157         | 1234              | 922  |
| MOSP (570)         | manufacturing     | 225          | 437               | 483  |
| Graph-Clear (135)  | building security | 24           | 4                 | 76   |

# of optimality solved instances with 8GB and 30-min

## Future Work

#### We need your ideas to advance DIDP!

- Visit our website: <u>https://didp.ai</u>
- Start DIDP with Python: pip install didppy Tutorials and API Reference: <u>https://didppy.rtfd.io</u>
- Start DIDP with YAML: cargo install didp-yaml
- Clone the repository:

git clone <a href="https://github.com/domain-independent-dp/didp-rs">https://github.com/domain-independent-dp/didp-rs</a> Everything in Rust

#### Time vs. Coverage (Mean over All Problems)

