
Domain-Independent
Dynamic Programming for
Combinatorial Optimization

J. Christopher Beck & Ryo Kuroiwa
Department of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

DPSOLVE Workshop
Toronto, August 27, 2023

This is not a talk about
Decision Diagrams

What it is about
1. A language to model combinatorial optimization

problems as dynamic programs

2. A solver that solves such problems using heuristic
search

2

Model-and-Solve
3

Problem

!

!

!

Problem Definition

Model-and-Solve
4

Problem

!

Problem Definition Models General Purpose
Solver

A Solution!CP, LP, MIP, MINLP,
AI Planning, …

Model-and-Solve for DP
• Domain-independent dynamic

programming (DIDP)

5

Define models
using DP
transition
system

Solve models
using heuristic

state-based
search

Open Source Software: didp-rs
https://github.com/domain-independent-dp/didp-rs

6

DIDPPy (Python) DIDP-YAML

DyPDL (Modeling) DyPDL Heuristic Search (Solver)

Interface

Core Libraries

Implemented in Rust

https://github.com/domain-independent-dp/didp-rs

Outline
1. Background
2. Our Modeling Interface: DIDPPy
3. Solving DIDP

4. Anytime DIDP Solvers
5. Ongoing & Future Work

7

Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

8

1

2

3

0
Depot

3

[5, 16] [8, 14]

3

4

4
[0, 10]

55

Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

9

1

2

3

0 [0, 10]

3

[5, 16] [8, 14]

3

4

4

Total cost: 14

t=8 (wait until 8)

t=4

t=12

55

t=0 Depot

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

11

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

12

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

13

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

14

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

15

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

16

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

17

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

DP for Combinatorial Optimization

Visit a customer

Return to the depot
Base case

18
DP usually solved by problem-specific algorithm implementations

Constants
● : all customers (0: depot)
● : time window for customer
● : travel time from customer to

Our Modeling Interface: DIDPPy

19

Constants and State Variables

20

Constants and State Variables

21

Module

Constants and State Variables

22

Model (minimization)

Constants and State Variables

23

Constants
Customers
Ready time
Deadline

Travel time

Constants and State Variables

24

To use state variable for indexing

Constants and State Variables

25

Unvisited
Current
Time

State variables

Constants and State Variables

26

Target state

Questions?

Recursive Equation as Transitions

27

Recursive Equation as Transitions

28

How to compute

i = 0 i = 1

… for each value of 𝑖 ∈ 𝑁

Recursive Equation as Transitions

29

How to compute the next state

Recursive Equation as Transitions

30

When the transition is applicable

Recursive Equation as Transitions

31

Next state Next stateNext state… …

Applicable transitions Minimum
State

Value of the current state: minimum cost over all applicable transitions
(infinity if no applicable transitions)

Recursive Equation as Transitions

32

Base Cases: When to Stop Recursion

33

End of recursion on

Better Model with Redundant Information
Explicitly modeling implications of the problem definition
(similar to redundant constraints in MIP)

35

Dominance based on resource variables

Dual bound function (LB in minimization)

A dual bound is defined for a state

Other features not detailed here:
● State constraints: conditions that a state must satisfy
● Forced transitions: sometimes transition can be inferred

Solving DIDP

36

Solving

37

DP as a Shortest Path Problem
● Optimal solution: the shortest path in a state space graph
● Nodes: states, edges: transitions, weights: travel times

38

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

39

{1, 2, 3}, 0, 0

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

40

{1, 2, 3}, 0, 0

f: 0

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

41

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

f: 3 f: 4 f: 5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

42

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

f: 4 f: 5
{3}, 2, 10

5

{2}, 3, 9

4

f: 8 f: 7

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

43

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

f: 5
{3}, 2, 10

5

{2}, 3, 9

4

f: 8 f: 7
{3}, 1, 9 {1}, 3, 8

3

f: 9 f: 7

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

44

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

f: 8 f: 7
{3}, 1, 9 {1}, 3, 8

3

f: 9 f: 7
{2}, 1, 12

f: 9

45

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

45

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

f: 8
{3}, 1, 9 {1}, 3, 8

3

f: 9 f: 7
{2}, 1, 12

f: 9

4

No transitions

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

46

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

f: 8
{3}, 1, 9 {1}, 3, 8

3

f: 9
{2}, 1, 12

f: 9

4

∅, 1, 12
4

f: 11

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

47

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

f: 9
{2}, 1, 12

f: 9

4

∅, 1, 12
4

f: 11
∅, 3, 13

3

f: 11

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

48

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12
f: 9

4

∅, 1, 12
4

f: 11
∅, 3, 13

3

f: 11

5

4
f: 13

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

49

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12
f: 9

4

∅, 1, 12
4

f: 11
∅, 3, 13

3

f: 11

5

4

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

50

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

f: 11
∅, 3, 13

3

f: 11

No transitions

5

4

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

51

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

f: 11

5

4

∅, 0, 15
3

f: 14

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

52

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

5

4

∅, 0, 15
3

f: 14
∅, 0, 18

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

53

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

5

4

∅, 0, 15
3

f: 14
∅, 0, 18

5

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

54

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

5

4

∅, 0, 15
3

f: 14
∅, 0, 18

5 Dominated✗

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

55

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

5

4

∅, 0, 15
3

f: 14
∅, 0, 18

5 Dominated✗

CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)

56

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4

3
4

{1, 2}, 3, 8

5

{3}, 2, 10

5

{2}, 3, 9

4

{3}, 1, 9 {1}, 3, 8

3

{2}, 1, 12

4

∅, 1, 12
4

∅, 3, 13
3

5

4

∅, 0, 15
3

f: 14
∅, 0, 18

5 Dominated✗ Finishing time
Travel time (w/o waiting)

Guaranteed to be
an optimal solution

Comparison of MIP, CP, and DIDP

57

Problem Description MIP (Gurobi) CP (CP Optimizer) DIDP

TSPTW (340) TSP with time 227 47 257

CVRP (207) vehicle routing 26 0 5

SALBP-1 (2100) assembly line 1357 1584 1653

Bin Packing (1615) bin packing 1157 1234 922

MOSP (570) manufacturing 225 437 483

Graph-Clear (135) building security 24 4 76

of optimally solved instances with 8 GB and 30 minutes

ICAPS 2023 [Kuroiwa and Beck 2023a]

Anytime DIDP Solvers

58

Anytime Solvers
● Quickly find a solution and continuously improve it
● Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Cost

Time

Optimal

—: CAASDy
—: Anytime

59

Anytime State Space Search Algorithms

60

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and
best-first search

Kao et al. 2009

Anytime Column Progressive Search
(ACPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search
(APPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Anytime State Space Search Algorithms

61

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and
best-first search

Kao et al. 2009

Anytime Column Progressive Search
(ACPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search
(APPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

62

{1, 2, 3}, 0, 0

f: 0

b = 2

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

63

{1, 2, 3}, 0, 0

f: 0

b = 2

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

64

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8
f: 3 f: 4 f: 5

b = 2 3
4

5

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

65

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8
f: 3 f: 4 f: 5

b = 2 3
4

5

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

66

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 3, 9
f: 8 f: 7 f: 9 f: 7

b = 2

5 5 34

3
4

5

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

67

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 3, 9
f: 8 f: 7 f: 9 f: 7

b = 2 3
4

5 5 34

5

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

68

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 3, 9

No transitions

f: 11

b = 2

4

3
4

5 5 34

5

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

69

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 3, 9

No transitions

f: 11

b = 2

4

3

5 5 34

5
4

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

70

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

b = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

71

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

b = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

72

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

b = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality

73

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

b = 2

4

3

5 5 34

5
4

3

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

74

{1, 2, 3}, 0, 0b = 8, incumbent: 14

f: 0

[Zhang 1998]

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

75

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8

b = 8, incumbent: 14

f: 3 f: 4 f: 5

3 5
4

[Zhang 1998]

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

76

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

b = 8, incumbent: 14

f: 8 f: 7 f: 9 f: 7 f: 9

3

5 5 34

5

4

4

[Zhang 1998]

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

77

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

b = 8, incumbent: 14

∅, 3, 13
f: 11f: 11

3
4

5

3

5 3

4

44

4

5

[Zhang 1998]

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

78

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

b = 8, incumbent: 14

f: 14

∅, 3, 13

∅, 0, 18
f: 16

3
4

5

3

5

5 3

4

3

44

4

5

[Zhang 1998]

Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

79

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

b = 8, incumbent: 14

✗
f: 14

∅, 3, 13

∅, 0, 18✗
f: 16

Proved the optimality

3
4

5

3

5

5 3

4

3

44

4

5

[Zhang 1998]

Experimental Evaluation of CABS

80

of Optimally Solved by CABS

81

Description MIP CP CAASDy CABS

TSPTW (340) TSP with time 227 47 257 259

CVRP (207) vehicle routing 26 0 5 6

SALBP-1 (2100) assembly line 1357 1584 1653 1801

Bin Packing (1615) bin packing 1157 1234 922 1163

MOSP (570) manufacturing 225 437 483 527

Graph-Clear (135) building security 24 4 76 103

Talent Scheduling (1000) scheduling actors 6 7 224 253

m-PDTSP (1117) pick up & delivery 945 1049 947 1035

1||∑wiTi (375) job scheduling 109 150 270 285
of optimally solved instances with 8 GB and 30 minutes

Primal gap: (1 if no solution found)

Primal Integral

Primal gap

Time

82

0

1

Time limit

Primal integral

0

Primal gap at limit

[Berthold 2013]

Mean Primal Gap/Primal Integral

83

Description MIP CP CABS

TSPTW (340) TSP with time 0.227/484.1 0.026/49.0 0.003/9.0

CVRP (207) vehicle routing 0.585/1157.4 0.317/601.2 0.185/351.2

SALBP-1 (2100) assembly line 0.345/634.6 0.005/28.5 0.000/1.9

Bin Packing (1615) bin packing 0.039/86.2 0.002/8.0 0.002/5.3

MOSP (570) manufacturing 0.039/100.4 0.004/13.0 0.000/0.4

Graph-Clear (135) building security 0.110/311.8 0.015/44.3 0.000/0.5

Talent Scheduling (1000) scheduling actors 0.051/142.7 0.002/18.1 0.011/26.4

m-PDTSP (1178) pick up & delivery 0.078/180.0 0.013/26.0 0.002/5.3

1||∑wiTi (375) job scheduling 0.018/74.6 0.000/2.3 0.034/73.6

Best paper runner-up at ICAPS 2023 [Kuroiwa and Beck 2023b]

Current & Future Work

84

DIDP Papers at CP

85

Building a Parallel Solver

86

Sequential

Parallel

AnytimeNot anytime

CAASDy CABS

Gurobi

CPLEX CP Optimizer

OR ToolsSCIPOpen source

Xpress

Comparison of Solvers with 32 Threads

88

Problem Description Gurobi CP
Optimizer

CABS Prototype

TSPTW (340) TSP with time 239/4.2 27/0.1 235/- 262/13.3

CVRP (207) vehicle routing 29/5.3 0/- 5/- 8/9.3

SALBP-1 (2100) assembly line 1351/1.3 1581/1.4 1714/- 1824/18.8

Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1110/- 1239/39.6

MOSP (570) manufacturing 238/3.1 397/0.3 507/- 531/9.0

Graph-Clear (135) building security 16/2.0 3/3.2 92/- 113/10.3

of optimally solved instances/speedup with 32 threads, 19 2GB, and 5 minutes

What Makes a Good Model?
What DP models are good/bad?

90

Problem

DP Model 1

DIDP solver

Model Solve
DP Model 2

Can we automatically derive a dual bound function from a model?

Domain-Independent Dual Bound Function

91

Problem DP Model DIDP solver

Model Solve

Derive

Dual bound function

Empirical Analysis of DIDP Search
● What properties of a problem do make DP efficient/inefficient?
● Apply empirical analysis conducted in SAT and CSP
● E.g., does randomized restart help?

[Gent and Walsh 1994] 92

Please Use DIDP on Your Problems!

93

● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

Questions?

https://didp.ai
https://didppy.rtfd.io

