Domain-Independent Dynamic Programming for Combinatorial Optimization

J. Christopher Beck & Ryo Kuroiwa Department of Mechanical & Industrial Engineering University of Toronto

jcb@mie.utoronto.ca

DPSOLVE Workshop Toronto, August 27, 2023

This is not a talk about Decision Diagrams

What it is about

- 1. A language to model combinatorial optimization problems as dynamic programs
- 2. A solver that solves such problems using heuristic search

Model-and-Solve

Problem Problem Definition

Model-and-Solve

Model-and-Solve for DP

 Domain-independent dynamic programming (DIDP)

Solve models using heuristic state-based search

Open Source Software: didp-rs

https://github.com/domain-independent-dp/didp-rs

Implemented in Rust

Outline

- 1. Background
- 2. Our Modeling Interface: DIDPPy
- 3. Solving DIDP
- 4. Anytime DIDP Solvers
- 5. Ongoing & Future Work

Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows

Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \le b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \le b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0}} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ \text{else if } i \neq 0 \\ \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

 \mathbf{T}

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0 & \text{otherwise}} \end{cases} \text{ if } U \neq \emptyset \qquad \text{Visit a customer} \\ \text{Return to the depot} \\ \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0 \end{cases}} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ \text{else if } i \neq 0 & \text{Return to the depot} \\ \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i*: current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{\substack{j \in U: t+c_{ij} \leq b_j \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) \\ 0 & \text{otherwise}} \end{cases} \begin{array}{c} \text{Visit a customer} \\ \text{Return to the depot} \\ \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 & \text{Return to the depot} \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

Recursive equations for the value function of a state (subproblem)

compute
$$V(N \setminus \{0\}, 0, 0)$$

$$V(U, i, t) = \begin{cases} \min_{j \in U: t+c_{ij} \le b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\}) & \text{if } U \neq \emptyset & \text{Visit a customer} \\ c_{i0} + V(\emptyset, 0, t+c_{i0}) & \text{else if } i \neq 0 \\ 0 & \text{otherwise} & \text{Base case} \end{cases}$$

State variables:

- U: unvisited customers
- *i* : current customer
- *t* : current time

Constants

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij} : travel time from customer i to j

DP usually solved by problem-specific algorithm implementations

Our Modeling Interface: DIDPPy

import didppy as dp

```
model = dp.Model(maximize=False)
```

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```

u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add int var(target=0)

import didppy as dp Module

```
model = dp.Model(maximize=False)
```

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```

u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add int var(target=0)

import didppy as dp

model = dp.Model(maximize=False) Model(minimization)

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```

u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add int var(target=0)

import didppy as dp

model = dp.Model(maximize=False)

Constants

customer = model.add_object_type(number=4)								Customers			$\{0, 1$, 2, 3	}		
a :	= [0, 5, 0,	8]					Ready	, time)	a_i	()		1		
0 =	= [100, 16,	10,	14]				Dead	ine		b_i					
C =	<pre>model.add</pre>	int	<pre>table([[0,</pre>	3, 4	, 5],	[3,	0, 5,	4],	[4,	5, 0,	3],	[5,	4,	3,	0]])

u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add element var(object type=customer, target=0)

t = model.add_int_var(target=0)

Travel time c_{ij}

import didppy as dp

```
model = dp.Model(maximize=False)
```

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```

u = model.add_set_var(object_type=customer, target=[1, 2, 3])

i = model.add_element_var(object_type=customer, target=0)

```
t = model.add_int_var(target=0)
```

import didppy as dp

import didppy as dp

```
model = dp.Model(maximize=False)
```

```
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
```



```
for j in range(1, 4): V(U, i, t) = \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\})
visit = dp.Transition(
    name="visit {}".format(j),
    cost=c[i, j] + dp.IntExpr.state_cost(),
    effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
    preconditions=[u.contains(j), t + c[i, j] <= b[j]],</pre>
```

model.add_transition(visit)

```
for j in range(1, 4): V(U, i, t) = \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\})
visit = dp.Transition(
    name="visit {}".format(j),
    cost=c[i, j] + dp.IntExpr.state_cost(), How to compute V
    effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
    preconditions=[u.contains(j), t + c[i, j] <= b[j]],</pre>
```

model.add_transition(visit)

... for each value of $i \in N$

```
for j in range(1, 4): V(U, i, t) = \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t+c_{ij}, a_j\})
visit = dp.Transition(
    name="visit {}".format(j),
    cost=c[i, j] + dp.IntExpr.state_cost(), How to compute the next state
    effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
    preconditions=[u.contains(j), t + c[i, j] <= b[j]],</pre>
```

model.add_transition(visit)

```
for j in range(1, 4): V(U, i, t) = \min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\})
visit = dp.Transition(
    name="visit {}".format(j),
    cost=c[i, j] + dp.IntExpr.state_cost(),
    effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
    preconditions=[u.contains(j), t + c[i, j] <= b[j]],</pre>
```

model.add_transition(visit)

When the transition is applicable

model.add_transition(visit)

Value of the current state: minimum cost over all applicable transitions (infinity if no applicable transitions)

```
\begin{array}{ll} \texttt{return\_to\_depot} = \texttt{dp.Transition}( & V(U,i,t) = c_{i0} + V(\emptyset,0,t+c_{i0}) & \text{if } U = \emptyset \land i \neq 0 \\ \texttt{name="return",} \\ \texttt{cost=c[i, 0] + dp.IntExpr.state\_cost(),} \\ \texttt{effects=[(i, 0), (t, t + c[i, 0])],} \\ \texttt{preconditions=[u.is\_empty(), i != 0],} \end{array}
```

model.add_transition(return_to_depot)

Base Cases: When to Stop Recursion

model.add_base_case([u.is_empty(), i == 0], cost=0) V(U, i, t) = 0 if $U = \emptyset \land i = 0$

End of recursion on ${\cal V}$

Better Model with Redundant Information

Explicitly modeling implications of the problem definition (similar to redundant constraints in MIP)

Dominance based on resource variables $V(U, i, t) \leq V(U, i, t')$ if $t \leq t'$

t = model.add_int_resource_var(target=0, less_is_better=True)

Dual bound function (LB in minimization) $V(U,i,t) \geq 0$

model.add_dual_bound(0)

A dual bound is defined for a state

Other features not detailed here:

- State constraints: conditions that a state must satisfy
- Forced transitions: sometimes transition can be inferred

Solving DIDP

Solving

```
solver = dp.CABS(model)
solution = solver.search()
```

```
if solution.is_optimal:
    print("Optimal cost: {}".format(solution.cost))
elif solution.is_feasible:
    print("Infeasible")
else:
    print("Best cost: {}".format(solution.cost))
    print("Best bound: {}".format(solution.best bound))
```

print("Solution:")

for transition in solution.transitions:
 print(transition.name)

DP as a Shortest Path Problem

- Optimal solution: the shortest path in a state space graph
- Nodes: states, edges: transitions, weights: travel times

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

$$\{1, 2, 3\}, 0, 0$$

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

$$\{1, 2, 3\}, 0, 0$$

 $V(U, i, t) \ge 0$ f: 0

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

- Solves DP as a shortest path problem with A* search
- A* searches in the order of *f* (path cost + dual bound of a state)

Comparison of MIP, CP, and DIDP

Problem	Description	MIP (Gurobi)	CP (CP Optimizer)	DIDP
TSPTW (340)	TSP with time	227	47	257
CVRP (207)	vehicle routing	26	0	5
SALBP-1 (2100)	assembly line	1357	1584	1653
Bin Packing (1615)	bin packing	1157	1234	922
MOSP (570)	manufacturing	225	437	483
Graph-Clear (135)	building security	24	4	76

of optimally solved instances with 8 GB and 30 minutes

ICAPS 2023 [Kuroiwa and Beck 2023a] 57

Anytime DIDP Solvers

Anytime Solvers

- Quickly find a solution and continuously improve it
- Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Anytime State Space Search Algorithms

Algorithm	Description	Reference
Depth First Branch-and-Bound (DFBnB)	DFS	
Cyclic Best-First Search (CBFS)	Hybrid of DFS and best-first search	Kao et al. 2009
Anytime Column Progressive Search (ACPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2012
Anytime Pack Progressive Search (APPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2016
Discrepancy-Bounded DFS (DBDFS)	Discrepancy-based	Beck and Perron 2000
Complete Anytime Beam Search (CABS)	Iterative beam search	Zhang 1998

Implemented in <u>https://github.com/domain-independent-dp/didp-rs</u> 60

Anytime State Space Search Algorithms

Algorithm	Description	Reference
Depth First Branch-and-Bound (DFBnB)	DFS	
Cyclic Best-First Search (CBFS)	Hybrid of DFS and best-first search	Kao et al. 2009
Anytime Column Progressive Search (ACPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2012
Anytime Pack Progressive Search (APPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2016
Discrepancy-Bounded DFS (DBDFS)	Discrepancy-based	Beck and Perron 2000
Complete Anytime Beam Search (CABS)	Iterative beam search	Zhang 1998

Implemented in <u>https://github.com/domain-independent-dp/didp-rs</u> 61

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

b = 2

$$[\{1, 2, 3\}, 0, 0]$$

f: 0

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

$$\{1, 2, 3\}, 0, 0$$

f: 0

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep b best states using the f-value at each layer
- No guarantee of completeness nor optimality

- Keep b best states using the f-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

- Keep *b* best states using the *f*-value at each layer
- No guarantee of completeness nor optimality

Complete Anytime Beam Search (CABS)

- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

```
b = 8, incumbent: 14
```

$$\{1, 2, 3\}, 0, 0$$

f: 0
- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

[Zhang 1998] 77

- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

78

- Beam search with $b = 1, 2, 4, 8, 16, \dots$ until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

Experimental Evaluation of CABS

of Optimally Solved by CABS

	Description	MIP	CP	CAASDy	CABS	
TSPTW (340)	TSP with time	227	47	257	259	
CVRP (207)	vehicle routing	26	0	5	6	
SALBP-1 (2100)	assembly line	1357	1584	1653	1801	
Bin Packing (1615)	bin packing	1157	1234	922	1163	
MOSP (570)	manufacturing	225	437	483	527	
Graph-Clear (135)	building security	24	4	76	103	
Talent Scheduling (1000)	scheduling actors	6	7	224	253	
m-PDTSP (1117)	pick up & delivery	945	1049	947	1035	
$1 \ \sum w_i T_i$ (375)	job scheduling	109	150	270	285	
# of optimally solved instances with 8 GB and 30 minutes						

Primal Integral

[Berthold 2013] 82

Mean Primal Gap/Primal Integral

	Description	MIP	CP	CABS
TSPTW (340)	TSP with time	0.227/484.1	0.026/49.0	0.003/9.0
CVRP (207)	vehicle routing	0.585/1157.4	0.317/601.2	0.185/351.2
SALBP-1 (2100)	assembly line	0.345/634.6	0.005/28.5	0.000/1.9
Bin Packing (1615)	bin packing	0.039/86.2	0.002 /8.0	0.002/5.3
MOSP (570)	manufacturing	0.039/100.4	0.004/13.0	0.000/0.4
Graph-Clear (135)	building security	0.110/311.8	0.015/44.3	0.000/0.5
Talent Scheduling (1000)	scheduling actors	0.051/142.7	0.002/18.1	0.011/26.4
m-PDTSP (1178)	pick up & delivery	0.078/180.0	0.013/26.0	0.002/5.3
$1 \ \sum w_i T_i$ (375)	job scheduling	0.018/74.6	0.000/2.3	0.034/73.6

Best paper runner-up at ICAPS 2023 [Kuroiwa and Beck 2023b]

Current & Future Work

DIDP Papers at CP

Tuesday, August 29th

16:00-16:50 Session 14B

Applications 3

16:00 Arnoosh Golestanian, Giovanni Lo Bianco, Chengyu Tao and J. Christopher Beck

Optimization models for pickup and delivery problems with reconfigurable capacities (abstract)

Thursday, August 31st

13:20-14:20 Session 27A

Search 3

13:50 Ryo Kuroiwa and J. Christopher Beck

Large Neighborhood Beam Search for Domain-Independent Dynamic Programming (abstract)

Building a Parallel Solver

Comparison of Solvers with 32 Threads

Problem	Description	Gurobi	CP Optimizer	CABS	Prototype
TSPTW (340)	TSP with time	239/4.2	27/0.1	235/-	262/13.3
CVRP (207)	vehicle routing	<mark>29</mark> /5.3	0/-	5/-	8/ <mark>9.3</mark>
SALBP-1 (2100)	assembly line	1351/1.3	1581/1.4	1714/-	1824/18.8
Bin Packing (1615)	bin packing	1192/6.4	1251 /9.2	1110/-	1239/ <mark>39.6</mark>
MOSP (570)	manufacturing	238/3.1	397/0.3	507/-	531/9.0
Graph-Clear (135)	building security	16/2.0	3/3.2	92/-	113/10.3

of optimally solved instances/speedup with 32 threads, 19 2GB, and 5 minutes

What Makes a Good Model?

 $V(N \setminus \{0\}, i) = c_{0i}$

What DP models are good/bad?

DP Model 1

DIDP solver

Domain-Independent Dual Bound Function

Can we automatically derive a dual bound function from a model?

Empirical Analysis of DIDP Search

- What properties of a problem do make DP efficient/inefficient?
- Apply empirical analysis conducted in SAT and CSP
- E.g., does randomized restart help?

mean (solid), median (dashed) branches, N = 75

[Gent and Walsh 1994]

Please Use DIDP on Your Problems!

- Visit our website: <u>https://didp.ai</u>
- Start DIDP with Python: pip install didppy Tutorials and API Reference: <u>https://didppy.rtfd.io</u>

$\leftarrow \ \rightarrow \ \mathbf{G}$	O A https://didppy.readthedocs.io/en/stable/	☆	${igsidential}$	M G	0	
🕷 DIDPPy	Installation					
stable Search docs	didppy can be installed from PyPI using pip. Python 3.7 or higher is required.					
INTRODUCTION	pip install didppy					
Quick Start Tutorial	Introduction					
Advanced Tutorials Examples DIDP Papers References	 Quick Start Tutorial Advanced Tutorials Examples DIDP Papers 				Que	stions?
USER GUIDE Solver Selection	References User Guide					
Debugging Guide API REFERENCE DIDPPy API Reference	Solver SelectionDebugging Guide					
Read the Docs	API Reference DIDPPy API Reference					