Domain-Independent Dynamic Programming for Combinatorial Optimization

J. Christopher Beck \& Ryo Kuroiwa
Department of Mechanical \& Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

This is not a talk about Decision Diagrams

What it is about

1. A language to model combinatorial optimization problems as dynamic programs
2. A solver that solves such problems using heuristic search

Model-and-Solve

Problem Problem Definition

Model-and-Solve

Model-and-Solve for DP

- Domain-independent dynamic programming (DIDP)

Define models using DP transition system

Solve models using heuristic state-based search

Open Source Software: didp-rs

https://github.com/domain-independent-dp/didp-rs

Implemented in Rust

Outline

1. Background
2. Our Modeling Interface: DIDPPy
3. Solving DIDP
4. Anytime DIDP Solvers
5. Ongoing \& Future Work

Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows

Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW) Minimize the travel time to visit all customers within time windows

Total cost: 14

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)
compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)

compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)
compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)

compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)
compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\frac{\min }{\mid j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)
compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)

> compute $V(N \backslash\{0\}, 0,0)$
> $V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP for Combinatorial Optimization

Recursive equations for the value function of a state (subproblem)
compute $V(N \backslash\{0\}, 0,0)$
$V(U, i, t)=\left\{\begin{array}{lll}\min _{j \in U: t+c_{i j} \leq b_{j}} c_{i j}+V\left(U \backslash\{j\}, j, \max \left\{t+c_{i j}, a_{j}\right\}\right) & \text { if } U \neq \emptyset & \text { Visit a customer } \\ c_{i 0}+V\left(\emptyset, 0, t+c_{i 0}\right) & \text { else if } i \neq 0 & \text { Return to the depot } \\ 0 & \text { otherwise } & \text { Base case }\end{array}\right.$

State variables:

- U : unvisited customers
- i : current customer
- t : current time

Constants

- N : all customers (0: depot)
- $\left[a_{i}, b_{i}\right]$: time window for customer i
- $c_{i j}$: travel time from customer i to j

DP usually solved by problem-specific algorithm implementations

Our Modeling Interface: DIDPPy

Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add_int_var(target=0)
```


Constants and State Variables

```
import didppy as dp Module
model = dp.Model(maximize=False)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add_int_var(target=0)
```


Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False) Model (minimization)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add_int_var(target=0)
```


Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False)
Constants
```



```
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
Travel time \(c_{i j}\)
i = model.add_element_var(object_type=customer, target=0)
t = model.add_int_var(target=0)
```


Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
t = model.add_int_var(target=0)
```


Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
State variables
u = model.add_set_var(object_type=customer, target=[1, 2, 3]) Unvisited U\subseteqN
i = model.add_element_var(object_type=customer, target=0) . Current }i\in
t = model.add int var(target=0)
Time \(\quad t \in \mathbb{Z}\)
```


Constants and State Variables

```
import didppy as dp
model = dp.Model(maximize=False)
customer = model.add_object_type(number=4)
a = [0, 5, 0, 8]
b = [100, 16, 10, 14]
c = model.add_int_table([[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]])
u = model.add_set_var(object_type=customer, target=[1, 2, 3])
i = model.add_element_var(object_type=customer, target=0)
Target state
t = model.add_int_var(target=0)


\section*{Questions?}

\section*{Recursive Equation as Transitions}
```

for j in range(1, 4): }\quadV(U,i,t)=\mp@subsup{\operatorname{min}}{j\inU:t+\mp@subsup{c}{ij}{\prime}\leq\mp@subsup{b}{j}{\prime}}{}\mp@subsup{c}{ij}{}+V(U\backslash{j},j,max{t+\mp@subsup{c}{ij}{},\mp@subsup{a}{j}{}}
name="visit {}".format(j),
cost=c[i, j] + dp.IntExpr.state_cost(),
effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
preconditions=[u.contains(j), t + c[i, j] <= b[j]],
)
model.add_transition(visit)

```

\section*{Recursive Equation as Transitions}
```

for j in range(1, 4): }\quadV(U,i,t)=\mp@subsup{m}{j\inU:t+\mp@subsup{c}{ij}{\prime}\leq\mp@subsup{b}{j}{}}{}\mp@subsup{c}{ij}{}+V(U\backslash{j},j,max{t+\mp@subsup{c}{ij}{},\mp@subsup{a}{j}{}}
name="visit {}".format(j),
cost=c[i, j] + dp.IntExpr.state_cost(), How to compute V
effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
preconditions=[u.contains(j), t + c[i, j] <= b[j]],
)
model.add_transition(visit)

```

... for each value of \(i \in N\)

\section*{Recursive Equation as Transitions}
```

for j in range(1, 4): }V(U,i,t)=\mp@subsup{\operatorname{min}}{j\inU:t+\mp@subsup{c}{ij}{\prime}\leq\mp@subsup{b}{j}{}}{}\mp@subsup{c}{ij}{}+V(U\backslash{j},j,m,max{t+\mp@subsup{c}{ij}{},\mp@subsup{a}{j}{}}
name="visit {}".format(j),
cost=c[i, j] + dp.IntExpr.state cost(), How to compute the next state
effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
preconditions=[u.contains(j), t + c[i, j] <= b[j]],
)
model.add_transition(visit)

```

\section*{Recursive Equation as Transitions}
```

for j in range(1, 4): }V(U,i,t)=\mp@subsup{m}{j\inU:t+\mp@subsup{c}{ij}{\prime}\leq\mp@subsup{b}{j}{\prime}}{}\mp@subsup{c}{ij}{}+V(U\backslash{j},j,max{t+\mp@subsup{c}{ij}{},\mp@subsup{a}{j}{}}
name="visit {}".format(j),
cost=c[i, j] + dp.IntExpr.state_cost(),
effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
preconditions=[u.contains(j), t + c[i, j] <= b[j]],
)
model.add_transition(visit)
When the transition is applicable

```

\section*{Recursive Equation as Transitions}
```

for j in range(1, 4): }\quad|=|,U,i,t)=\mp@subsup{\operatorname{min}}{j\inU:t+\mp@subsup{c}{ij}{\prime}\leq\mp@subsup{b}{j}{}}{}\mp@subsup{c}{ij}{}+V(U\backslash{j},j,max{t+\mp@subsup{c}{ij}{},\mp@subsup{a}{j}{}}
name="visit {}".format(j),
cost=c[i, j] + dp.IntExpr.state_cost(),
effects=[(u, u.remove(j)), (i, j), (t, dp.max(t + c[i, j], a[j]))],
preconditions=[u.contains(j), t + c[i, j] <= b[j]],
)
model.add_transition(visit)

```

Applicable transitions


Value of the current state: minimum cost over all applicable transitions (infinity if no applicable transitions)

\section*{Recursive Equation as Transitions}
```

return_to_depot = dp.Transition(}V(U,i,t)=\mp@subsup{c}{i0}{}+V(\emptyset,0,t+\mp@subsup{c}{i0}{})\quad\mathrm{ if }U=\emptyset\wedgei\not=
name="return",
cost=c[i, 0] + dp.IntExpr.state_cost(),
effects=[(i, 0), (t, t + c[i, 0])],
preconditions=[u.is_empty(), i != 0],
)
model.add_transition(return_to_depot)

```


\section*{Base Cases: When to Stop Recursion}
model.add_base_case([u.is_empty(), i == 0], cost=0) \(V(U, i, t)=0 \quad\) if \(U=\emptyset \wedge i=0\)

End of recursion on \(V\)


\section*{Better Model with Redundant Information}

Explicitly modeling implications of the problem definition (similar to redundant constraints in MIP)
Dominance based on resource variables \(V(U, i, t) \leq V\left(U, i, t^{\prime}\right)\) if \(t \leq t^{\prime}\)
```

t = model.add_int_resource_var(target=0, less_is_better=True)

```

Dual bound function (LB in minimization) \(V(U, i, t) \geq 0\)
```

model.add_dual_bound(0)

```

A dual bound is defined for a state
Other features not detailed here:
- State constraints: conditions that a state must satisfy
- Forced transitions: sometimes transition can be inferred

\section*{Solving DIDP}

\section*{Solving}
```

solver = dp.CABS(model)
solution = solver.search()
if solution.is_optimal:
print("Optimal cost: {}".format(solution.cost))
elif solution.is_feasible:
print("Infeasible")
else:
print("Best cost: {}".format(solution.cost))
print("Best bound: {}".format(solution.best_bound))
print("Solution:")
for transition in solution.transitions:
print(transition.name)

```

\section*{DP as a Shortest Path Problem}
- Optimal solution: the shortest path in a state space graph
- Nodes: states, edges: transitions, weights: travel times


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)
\[
\{1,2,3\}, 0,0
\]

\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)
\[
V(U, i, t) \geq 0 \quad\{1,2,3\}, 0,0
\]

\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{CAASDy: Prototype Solver for DIDP}
- Solves DP as a shortest path problem with A* search
- A* searches in the order of \(f\) (path cost + dual bound of a state)


\section*{Comparison of MIP, CP, and DIDP}
\begin{tabular}{|c|c|c|c|c|}
\hline Problem & Description & MIP (Gurobi) & CP (CP Optimizer) & DIDP \\
\hline TSPTW (340) & TSP with time & 227 & 47 & 257 \\
\hline CVRP (207) & vehicle routing & 26 & 0 & 5 \\
\hline SALBP-1 (2100) & assembly line & 1357 & 1584 & 1653 \\
\hline Bin Packing (1615) & bin packing & 1157 & 1234 & 922 \\
\hline MOSP (570) & manufacturing & 225 & 437 & 483 \\
\hline Graph-Clear (135) & building security & 24 & 4 & 76 \\
\hline \multicolumn{5}{|c|}{\# of optimally solved instances with 8 GB and 30 minutes} \\
\hline
\end{tabular}

\section*{Anytime DIDP Solvers}

\section*{Anytime Solvers}
- Quickly find a solution and continuously improve it
- Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?


\section*{Anytime State Space Search Algorithms}
\begin{tabular}{l|ll} 
Algorithm & Description & Reference \\
\hline Depth First Branch-and-Bound (DFBnB) & DFS & \\
Cyclic Best-First Search (CBFS) & \begin{tabular}{l} 
Hybrid of DFS and \\
best-first search
\end{tabular} & Kao et al. 2009 \\
Anytime Column Progressive Search & \begin{tabular}{l} 
Hybrid of DFS and \\
beam search
\end{tabular} & Vadlamudi et al. 2012 \\
(ACPS) & \begin{tabular}{l} 
Hybrid of DFS and \\
beam search
\end{tabular} & Vadlamudi et al. 2016 \\
Anytime Pack Progressive Search & Discrepancy-based & Beck and Perron 2000 \\
(APPS) & \begin{tabular}{l} 
Discrepancy-Bounded DFS (DBDFS)
\end{tabular} \\
Complete Anytime Beam Search (CABS) & Iterative beam search Zhang 1998
\end{tabular}

\section*{Anytime State Space Search Algorithms}
\begin{tabular}{l|ll} 
Algorithm & Description & Reference \\
\hline Depth First Branch-and-Bound (DFBnB) & DFS & \\
\begin{tabular}{l} 
Cyclic Best-First Search (CBFS)
\end{tabular} & \begin{tabular}{l} 
Hybrid of DFS and \\
best-first search
\end{tabular} & Kao et al. 2009 \\
\begin{tabular}{l} 
Anytime Column Progressive Search \\
(ACPS)
\end{tabular} & \begin{tabular}{l} 
Hybrid of DFS and \\
beam search
\end{tabular} & Vadlamudi et al. 2012 \\
\begin{tabular}{l} 
Anytime Pack Progressive Search \\
(APPS)
\end{tabular} & \begin{tabular}{l} 
Hybrid of DFS and \\
beam search
\end{tabular} & Vadlamudi et al. 2016 \\
\begin{tabular}{ll} 
Discrepancy-Bounded DFS (DBDFS)
\end{tabular} & \begin{tabular}{l} 
Discrepancy-based
\end{tabular} & Beck and Perron 2000 \\
\hline Complete Anytime Beam Search (CABS) & Iterative beam search Zhang 1998
\end{tabular}

\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality
\(b=2\)
\[
\frac{\{1,2,3\}, 0,0}{f: 0}
\]

\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality
\(b=2\)
\[
\frac{\{1,2,3\}, 0,0}{f: 0}
\]

\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality
\[
b=2
\]


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality
\[
b=2
\]


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Beam Search}
- Keep \(b\) best states using the \(f\)-value at each layer
- No guarantee of completeness nor optimality


\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted
- Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost
\(b=8\), incumbent: 14
\[
\frac{\{1,2,3\}, 0,0}{f: 0}
\]

\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted
- Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost


\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted - Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost


\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted - Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost


\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted
- Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost


\section*{Complete Anytime Beam Search (CABS)}
- Beam search with \(b=1,2,4,8,16, \ldots\) until states are exhausted
- Prune a state \(s\) if \(f(s) \geq\) the incumbent solution cost


\section*{Experimental Evaluation of CABS}

\section*{\# of Optimally Solved by CABS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Description & MIP & CP & CAASDy & CABS \\
\hline TSPTW (340) & TSP with time & 227 & 47 & 257 & 259 \\
\hline CVRP (207) & vehicle routing & 26 & 0 & 5 & 6 \\
\hline SALBP-1 (2100) & assembly line & 1357 & 1584 & 1653 & 1801 \\
\hline Bin Packing (1615) & bin packing & 1157 & 1234 & 922 & 1163 \\
\hline MOSP (570) & manufacturing & 225 & 437 & 483 & 527 \\
\hline Graph-Clear (135) & building security & 24 & 4 & 76 & 103 \\
\hline Talent Scheduling (1000) & scheduling actors & 6 & 7 & 224 & 253 \\
\hline m-PDTSP (1117) & pick up \& delivery & 945 & 1049 & 947 & 1035 \\
\hline \(1 \| \sum w_{i} T_{i}(375)\) & job scheduling & 109 & 150 & 270 & 285 \\
\hline
\end{tabular}

\section*{Primal Integral}

Primal gap: \(\frac{\text { solution cost }- \text { best known cost }}{\text { solution cost }}\) (1 if no solution found)


\section*{Mean Primal Gap/Primal Integral}
\begin{tabular}{l|l|rrr} 
& Description & MIP & CP & CABS \\
\hline TSPTW (340) & TSP with time & \(0.227 / 484.1\) & \(0.026 / 49.0\) & \(\mathbf{0 . 0 0 3 / 9 . 0}\) \\
CVRP (207) & vehicle routing & \(0.585 / 1157.4\) & \(0.317 / 601.2\) & \(0.185 / 351.2\) \\
SALBP-1 (2100) & assembly line & \(0.345 / 634.6\) & \(0.005 / 28.5\) & \(\mathbf{0 . 0 0 0 / 1 . 9}\) \\
Bin Packing (1615) & bin packing & \(0.039 / 86.2\) & \(\mathbf{0 . 0 0 2 / 8 . 0}\) & \(\mathbf{0 . 0 0 2 / 5 . 3}\) \\
MOSP (570) & manufacturing & \(0.039 / 100.4\) & \(0.004 / 13.0\) & \(\mathbf{0 . 0 0 0 / 0 . 4}\) \\
Graph-Clear (135) & building security & \(0.110 / 311.8\) & \(0.015 / 44.3\) & \(0.000 / 0.5\) \\
Talent Scheduling (1000) & scheduling actors & \(0.051 / 142.7\) & \(\mathbf{0 . 0 0 2 / 1 8 . 1}\) & \(0.011 / 26.4\) \\
m-PDTSP (1178) & pick up \& delivery & \(0.078 / 180.0\) & \(0.013 / 26.0\) & \(0.002 / 5.3\) \\
\(1 \| \sum w_{i} T_{i}(375)\) & job scheduling & \(0.018 / 74.6\) & \(0.000 / 2.3\) & \(0.034 / 73.6\)
\end{tabular}

\section*{Current \& Future Work}

\section*{DIDP Papers at CP}

\section*{Tuesday, August 29th}
```

16:00-16:50 Session 14B
Applications 3
16:00 Arnoosh Golestanian, Giovanni Lo Bianco, Chengyu Tao and J. Christopher Beck
Optimization models for pickup and delivery problems with reconfigurable capacities (abstract)

```

\section*{Thursday, August 31st}

\section*{13:20-14:20 Session 27A}

Search 3
13:50 Ryo Kuroiwa and J. Christopher Beck
Large Neighborhood Beam Search for Domain-Independent Dynamic Programming (abstract)

\section*{Building a Parallel Solver}


\section*{Comparison of Solvers with 32 Threads}
\begin{tabular}{l|l|rrrr} 
Problem & Description & Gurobi & \begin{tabular}{r} 
CP \\
Optimizer
\end{tabular} & CABS & Prototype \\
\hline TSPTW (340) & TSP with time & \(239 / 4.2\) & \(27 / 0.1\) & \(235 /-\) & \(262 / 13.3\) \\
CVRP (207) & vehicle routing & \(29 / 5.3\) & \(0 /-\) & \(5 /-\) & \(8 / 9.3\) \\
SALBP-1 (2100) & assembly line & \(1351 / 1.3\) & \(1581 / 1.4\) & \(1714 /-\) & \(1824 / 18.8\) \\
Bin Packing (1615) & bin packing & \(1192 / 6.4\) & \(1251 / 9.2\) & \(1110 /-\) & \(1239 / 39.6\) \\
MOSP (570) & manufacturing & \(238 / 3.1\) & \(397 / 0.3\) & \(507 /-\) & \(531 / 9.0\) \\
Graph-Clear (135) & building security & \(16 / 2.0\) & \(3 / 3.2\) & \(92 /-\) & \(113 / 10.3\)
\end{tabular}
\# of optimally solved instances/speedup with 32 threads, 19 2GB, and 5 minutes

\section*{What Makes a Good Model?}

What DP models are good/bad?
DP Model 1


\section*{Domain-Independent Dual Bound Function}

Can we automatically derive a dual bound function from a model?


\section*{Empirical Analysis of DIDP Search}
- What properties of a problem do make DP efficient/inefficient?
- Apply empirical analysis conducted in SAT and CSP
- E.g., does randomized restart help?


Figure 1. Random 4-SAT problems, tested using ASAT,
mean (solid), median (dashed) branches, \(N=75\)

\section*{Please Use DIDP on Your Problems!}
- Visit our website: https://didp.ai
- Start DIDP with Python: pip install didppy Tutorials and API Reference: https://didppy.rtfd.io
```

