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This is not a talk about 
Decision Diagrams

What it is about
1. A language to model combinatorial optimization 

problems as dynamic programs

2. A solver that solves such problems using heuristic 
search
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Model-and-Solve
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Model-and-Solve
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Problem Definition Models General Purpose
Solver

A Solution!CP, LP, MIP, MINLP, 
AI Planning, …



Model-and-Solve for DP
• Domain-independent dynamic 

programming (DIDP)
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Define models 
using DP 
transition 
system 

Solve models 
using heuristic 

state-based 
search



Open Source Software: didp-rs
https://github.com/domain-independent-dp/didp-rs
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DIDPPy (Python) DIDP-YAML

DyPDL (Modeling) DyPDL Heuristic Search (Solver)

Interface

Core Libraries

Implemented in Rust

https://github.com/domain-independent-dp/didp-rs


Outline
1. Background
2. Our Modeling Interface: DIDPPy
3. Solving DIDP

4. Anytime DIDP Solvers
5. Ongoing & Future Work
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Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows
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Combinatorial Optimization
Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows
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Recursive equations for the value function of a state (subproblem)

State variables:
● : unvisited customers
● : current customer
● : current time

Constants
● : all customers (0: depot)
● : time window for customer 
● : travel time from customer   to 

DP for Combinatorial Optimization

Visit a customer 

Return to the depot
Base case
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DP usually solved by problem-specific algorithm implementations

Constants
● : all customers (0: depot)
● : time window for customer 
● : travel time from customer   to 



Our Modeling Interface: DIDPPy
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Constants and State Variables
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Constants and State Variables
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Module



Constants and State Variables
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Model (minimization)



Constants and State Variables
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Constants
Customers
Ready time
Deadline

Travel time



Constants and State Variables
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To use state variable   for indexing



Constants and State Variables

25

Unvisited
Current
Time

State variables



Constants and State Variables
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Target state

Questions?



Recursive Equation as Transitions
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Recursive Equation as Transitions
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How to compute

i = 0 i = 1

… for each value of 𝑖 ∈ 𝑁



Recursive Equation as Transitions
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How to compute the next state



Recursive Equation as Transitions
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When the transition is applicable



Recursive Equation as Transitions

31

Next state Next stateNext state… …

Applicable transitions Minimum
State

Value of the current state: minimum cost over all applicable transitions
(infinity if no applicable transitions)



Recursive Equation as Transitions
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Base Cases: When to Stop Recursion

33

End of recursion on



Better Model with Redundant Information
Explicitly modeling implications of the problem definition
(similar to redundant constraints in MIP)
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Dominance based on resource variables

Dual bound function (LB in minimization)

A dual bound is defined for a state

Other features not detailed here:
● State constraints: conditions that a state must satisfy
● Forced transitions: sometimes transition can be inferred



Solving DIDP

36



Solving
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DP as a Shortest Path Problem
● Optimal solution: the shortest path in a state space graph
● Nodes: states, edges: transitions, weights: travel times
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CAASDy: Prototype Solver for DIDP
● Solves DP as a shortest path problem with A* search
● A* searches in the order of f (path cost + dual bound of a state)
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Comparison of MIP, CP, and DIDP
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Problem Description MIP (Gurobi) CP (CP Optimizer) DIDP

TSPTW (340) TSP with time 227 47 257

CVRP (207) vehicle routing 26 0 5

SALBP-1 (2100) assembly line 1357 1584 1653

Bin Packing (1615) bin packing 1157 1234 922

MOSP (570) manufacturing 225 437 483

Graph-Clear (135) building security 24 4 76

# of optimally solved instances with 8 GB and 30 minutes

ICAPS 2023 [Kuroiwa and Beck 2023a]



Anytime DIDP Solvers
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Anytime Solvers
● Quickly find a solution and continuously improve it
● Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Cost

Time

Optimal

—: CAASDy
—: Anytime
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Anytime State Space Search Algorithms
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Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and 
best-first search

Kao et al. 2009

Anytime Column Progressive Search 
(ACPS) 

Hybrid of DFS and 
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search 
(APPS)

Hybrid of DFS and 
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Anytime State Space Search Algorithms

61

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and 
best-first search

Kao et al. 2009

Anytime Column Progressive Search 
(ACPS) 

Hybrid of DFS and 
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search 
(APPS)

Hybrid of DFS and 
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Beam Search
● Keep b best states using the f-value at each layer
● No guarantee of completeness nor optimality 
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Complete Anytime Beam Search (CABS)
● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost
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● Beam search with b = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost
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{1, 2, 3}, 0, 0
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{2}, 1, 12{2}, 3, 9

b = 8, incumbent: 14

✗
f: 14

∅, 3, 13

∅, 0, 18✗
f: 16

Proved the optimality
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[Zhang 1998]



Experimental Evaluation of CABS
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# of Optimally Solved by CABS
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Description MIP CP CAASDy CABS

TSPTW (340) TSP with time 227 47 257 259

CVRP (207) vehicle routing 26 0 5 6

SALBP-1 (2100) assembly line 1357 1584 1653 1801

Bin Packing (1615) bin packing 1157 1234 922 1163

MOSP (570) manufacturing 225 437 483 527

Graph-Clear (135) building security 24 4 76 103

Talent Scheduling (1000) scheduling actors 6 7 224 253

m-PDTSP (1117) pick up & delivery 945 1049 947 1035

1||∑wiTi (375) job scheduling 109 150 270 285
# of optimally solved instances with 8 GB and 30 minutes



Primal gap:                                                    (1 if no solution found) 

Primal Integral

Primal gap

Time

82

0

1

Time limit

Primal integral

0

Primal gap at limit

[Berthold 2013]



Mean Primal Gap/Primal Integral
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Description MIP CP CABS

TSPTW (340) TSP with time 0.227/484.1 0.026/49.0 0.003/9.0

CVRP (207) vehicle routing 0.585/1157.4 0.317/601.2 0.185/351.2

SALBP-1 (2100) assembly line 0.345/634.6 0.005/28.5 0.000/1.9

Bin Packing (1615) bin packing 0.039/86.2 0.002/8.0 0.002/5.3

MOSP (570) manufacturing 0.039/100.4 0.004/13.0 0.000/0.4

Graph-Clear (135) building security 0.110/311.8 0.015/44.3 0.000/0.5

Talent Scheduling (1000) scheduling actors 0.051/142.7 0.002/18.1 0.011/26.4

m-PDTSP (1178) pick up & delivery 0.078/180.0 0.013/26.0 0.002/5.3

1||∑wiTi (375) job scheduling 0.018/74.6 0.000/2.3 0.034/73.6

Best paper runner-up at ICAPS 2023 [Kuroiwa and Beck 2023b]



Current & Future Work
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DIDP Papers at CP
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Building a Parallel Solver

86

Sequential

Parallel

AnytimeNot anytime

CAASDy CABS

Gurobi

CPLEX CP Optimizer

OR ToolsSCIPOpen source

Xpress



Comparison of Solvers with 32 Threads
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Problem Description Gurobi CP 
Optimizer

CABS Prototype

TSPTW (340) TSP with time 239/4.2 27/0.1 235/- 262/13.3

CVRP (207) vehicle routing 29/5.3 0/- 5/- 8/9.3

SALBP-1 (2100) assembly line 1351/1.3 1581/1.4 1714/- 1824/18.8

Bin Packing (1615) bin packing 1192/6.4 1251/9.2 1110/- 1239/39.6

MOSP (570) manufacturing 238/3.1 397/0.3 507/- 531/9.0

Graph-Clear (135) building security 16/2.0 3/3.2 92/- 113/10.3

# of optimally solved instances/speedup with 32 threads, 19 2GB, and 5 minutes



What Makes a Good Model?
What DP models are good/bad?
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Problem

DP Model 1

DIDP solver

Model Solve
DP Model 2



Can we automatically derive a dual bound function from a model?

Domain-Independent Dual Bound Function
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Problem DP Model DIDP solver

Model Solve

Derive

Dual bound function



Empirical Analysis of DIDP Search
● What properties of a problem do make DP efficient/inefficient?
● Apply empirical analysis conducted in SAT and CSP
● E.g., does randomized restart help?

[Gent and Walsh 1994] 92



Please Use DIDP on Your Problems!
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● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

Questions?

https://didp.ai
https://didppy.rtfd.io



