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Recap of DIDP
Novel model-based paradigm for combinatorial optimization
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Any combinatorial 
optimization problem

State-based DP model DIDP solver

Model Solve

Current solvers are based 
on heuristic search
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3

1

2

3

0

[5, 16] [8, 14]

[0, 10]

3 3

4

4

55

Dominance

Target state

Transitions

Base case

Dual bound

TSPTW



Prototype Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model

4

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

Target state

Base case
Dominated

✗
Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Prototype Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model

5

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

Target state

Base case
Dominated

✗

No solution until optimality solved

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Anytime Solvers
● Quickly find a solution and continuously improve it
● Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Cost

Time

   Optimal

—: CAASDy
—: Anytime
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Anytime Heuristic Search Algorithms
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Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and 
best-first search

Kao et al. 2009

Anytime Column Progressive Search 
(ACPS) 

Hybrid of DFS and 
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search 
(APPS)

Hybrid of DFS and 
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Anytime Heuristic Search Algorithms

8

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and 
best-first search

Kao et al. 2009

Anytime Column Progressive Search 
(ACPS) 

Hybrid of DFS and 
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search 
(APPS)

Hybrid of DFS and 
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs


Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality 
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Beam Search
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Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost
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Experimental Evaluation
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Primal gap:                                                    (1 if no solution found) 

Primal Integral

Primal gap

Time
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Coverage and Gap (Mean over All Problems)
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Coverage and Gap (Mean over All Problems)
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Coverage and Gap (TSPTW)
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Coverage and Gap (m-PDTSP)
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Coverage and Gap (1||∑wiTi)
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Coverage in Each Problem
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Description MIP CP CAASDy CABS

TSPTW (340) TSP with time 227 47 257 259

CVRP (207) vehicle routing 26 0 5 6

SALBP-1 (2100) assembly line 1357 1584 1653 1801

Bin Packing (1615) bin packing 1157 1234 922 1163

MOSP (570) manufacturing 225 437 483 527

Graph-Clear (135) building security 24 4 76 103

Talent Scheduling (1000) scheduling actors 6 7 224 253

m-PDTSP (1117) pick up & delivery 945 1049 947 1035

1||∑wiTi (375) job scheduling 109 150 270 285

# of optimality solved instances with 8GB and 30-min



Primal Integral (Mean over All Problems)
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Mean Primal Gap and Primal Integral
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Description MIP CP CABS

TSPTW (340) TSP with time 0.227/484.05 0.026/48.97 0.003/8.97

CVRP (207) vehicle routing 0.585/1157.43 0.317/601.15 0.185/351.21

SALBP-1 (2100) assembly line 0.345/634.64 0.005/28.48 0.000/1.92

Bin Packing (1615) bin packing 0.039/86.19 0.002/8.04 0.002/5.26

MOSP (570) manufacturing 0.039/100.41 0.004/13.01 0.000/0.36

Graph-Clear (135) building security 0.110/311.83 0.015/44.27 0.000/0.49

Talent Scheduling (1000) scheduling actors 0.051/142.69 0.002/18.14 0.011/26.36

m-PDTSP (1178) pick up & delivery 0.078/180.00 0.013/26.04 0.002/5.33

1||∑wiTi (375) job scheduling 0.018/74.56 0.000/2.26 0.034/73.60
Mean primal gap at limit / primal integral



Conclusion
● Anytime DIDP solvers are promising!
● Trade-off between time and memory
● Future work: parallelization?
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Please Use DIDP!
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We need your ideas to advance DIDP!

● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

● Start DIDP with YAML: cargo install didp-yaml

● Clone the repository:
git clone https://github.com/domain-independent-dp/didp-rs
Everything in Rust

https://didp.ai
https://didppy.rtfd.io
https://github.com/domain-independent-dp/didp-rs


Why Not Anytime Weighted A*? 
● A user may provide 0 dual bound (heuristic)
● Finding a satisficing solution is usually much easier in 

combinatorial optimization than in AI planning
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