
Solving Domain-Independent
Dynamic Programming Problems with

Anytime Heuristic Search
🎉 Best Paper Award Runner-up 🎉

Ryo Kuroiwa and J. Christopher Beck
Toronto Intelligent Decision Engineering Laboratory (TIDEL)

Department of Mechanical and Industrial Engineering
University of Toronto

Recap of DIDP
Novel model-based paradigm for combinatorial optimization

2

Any combinatorial
optimization problem

State-based DP model DIDP solver

Model Solve

Current solvers are based
on heuristic search

Recap of DIDP

3

1

2

3

0

[5, 16] [8, 14]

[0, 10]

3 3

4

4

55

Dominance

Target state

Transitions

Base case

Dual bound

TSPTW

Prototype Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model

4

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

Target state

Base case
Dominated

✗
Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Prototype Solver: CAASDy
● Solve DP as a shortest path in the state space using A*
● Heuristic: dual bound defined in a DP model

5

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

∅, 3, 13

∅, 0, 18

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

3
4

5

3

5

5 3

4

3

{1, 2}, 3, 8

{2}, 1, 12

4

{2}, 3, 9

4

4

5

Target state

Base case
Dominated

✗

No solution until optimality solved

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Anytime Solvers
● Quickly find a solution and continuously improve it
● Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Cost

Time

 Optimal

—: CAASDy
—: Anytime

6

Anytime Heuristic Search Algorithms

7

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and
best-first search

Kao et al. 2009

Anytime Column Progressive Search
(ACPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search
(APPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Anytime Heuristic Search Algorithms

8

Algorithm Description Reference

Depth First Branch-and-Bound (DFBnB) DFS

Cyclic Best-First Search (CBFS) Hybrid of DFS and
best-first search

Kao et al. 2009

Anytime Column Progressive Search
(ACPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2012

Anytime Pack Progressive Search
(APPS)

Hybrid of DFS and
beam search

Vadlamudi et al. 2016

Discrepancy-Bounded DFS (DBDFS) Discrepancy-based Beck and Perron 2000

Complete Anytime Beam Search (CABS) Iterative beam search Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

https://github.com/domain-independent-dp/didp-rs

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

9

{1, 2, 3}, 0, 0

f: 0

k = 2

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

10

{1, 2, 3}, 0, 0

f: 0

k = 2

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

11

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8
f: 3 f: 4 f: 5

k = 2 3
4

5

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

12

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8
f: 3 f: 4 f: 5

k = 2 3
4

5

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

13

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 3, 9
f: 8 f: 7 f: 9 f: 7

k = 2

5 5 34

3
4

5

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

14

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 3, 9
f: 8 f: 7 f: 9 f: 7

k = 2 3
4

5 5 34

5

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

15

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 3, 9

No transitions

f: 11

k = 2

4

3
4

5 5 34

5

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

16

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 3, 9

No transitions

f: 11

k = 2

4

3

5 5 34

5
4

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

17

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

k = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

18

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

k = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

19

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

k = 2

4

3

5 5 34

5
4

3

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

20

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

k = 2

4

3

5 5 34

5
4

3
Finishing time (makespan)
Travel time (w/o waiting)

Beam Search
● Keep k best states according to the f-values at each layer
● No guarantee of completeness nor optimality

21

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 3, 9

f: 14

k = 2

4

3

5 5 34

5
4

3
Beam search can reduce the memory usage
by keeping only states in the current layer

Finishing time (makespan)
Travel time (w/o waiting)

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

22

{1, 2, 3}, 0, 0k = 8, incumbent: 14

f: 0

Zhang 1998

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

23

{1, 2, 3}, 0, 0

{2, 3}, 1, 5 {1, 3}, 2, 4 {1, 2}, 3, 8

k = 8, incumbent: 14

f: 3 f: 4 f: 5

3 5
4

Zhang 1998

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

24

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

k = 8, incumbent: 14

f: 8 f: 7 f: 9 f: 7 f: 9

3

5 5 34

5

4

4

Zhang 1998

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

25

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

k = 8, incumbent: 14

∅, 3, 13
f: 11f: 11

3
4

5

3

5 3

4

44

4

5

Zhang 1998

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

26

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

k = 8, incumbent: 14

f: 14

∅, 3, 13

∅, 0, 18
f: 16

3
4

5

3

5

5 3

4

3

44

4

5

Zhang 1998

Complete Anytime Beam Search (CABS)
● Beam search with k = 1, 2, 4, 8, 16, … until states are exhausted
● Prune a state s if f(s) ≥ the incumbent solution cost

27

{1, 2, 3}, 0, 0

{2, 3}, 1, 5

{3}, 2, 10

{1, 3}, 2, 4

{3}, 1, 9 {1}, 3, 8{1}, 3, 8

∅, 1, 12

∅, 0, 15

{1, 2}, 3, 8

{2}, 1, 12{2}, 3, 9

k = 8, incumbent: 14

✗
f: 14

∅, 3, 13

∅, 0, 18✗
f: 16

Proved the optimality

3
4

5

3

5

5 3

4

3

44

4

5

Zhang 1998

Experimental Evaluation

28

Primal gap: (1 if no solution found)

Primal Integral

Primal gap

Time

29

0

1

Time limit

◼ Primal integral

0

Primal gap at limit

Berthold 2013

Coverage and Gap (Mean over All Problems)

30

CABS

MIP, CPR
at

io
 o

f i
ns

ta
nc

es

CAASDy

Time to solve optimally Primal gap at limit

The other anytime methods are
between CABS and MIP/CP

R
at

io
 o

f i
ns

ta
nc

es

Coverage and Gap (Mean over All Problems)

31

Heuristic search algorithms except for
CABS reach 8GB memory limit

R
at

io
 o

f i
ns

ta
nc

es

Time to solve optimally Primal gap at limit

CABS

Coverage and Gap (TSPTW)

32

R
at

io
 o

f i
ns

ta
nc

es

Time to solve optimally Primal gap at limit

MIP

CP (coverage < 0.4)

CAASDy
CABS

Coverage and Gap (m-PDTSP)

33

R
at

io
 o

f i
ns

ta
nc

es

Time to solve optimally Primal gap at limit

CP

MIP

CABS
CAASDy

Coverage and Gap (1||∑wiTi)

34

R
at

io
 o

f i
ns

ta
nc

es

Time to solve optimally Primal gap at limit

CABS

CP

CP

CAASDy

MIP (coverage < 0.4)

Coverage in Each Problem

35

Description MIP CP CAASDy CABS

TSPTW (340) TSP with time 227 47 257 259

CVRP (207) vehicle routing 26 0 5 6

SALBP-1 (2100) assembly line 1357 1584 1653 1801

Bin Packing (1615) bin packing 1157 1234 922 1163

MOSP (570) manufacturing 225 437 483 527

Graph-Clear (135) building security 24 4 76 103

Talent Scheduling (1000) scheduling actors 6 7 224 253

m-PDTSP (1117) pick up & delivery 945 1049 947 1035

1||∑wiTi (375) job scheduling 109 150 270 285

of optimality solved instances with 8GB and 30-min

Primal Integral (Mean over All Problems)

36

R
at

io
 o

f i
ns

ta
nc

es

Primal Integral

CABS

CAASDy

MIP

CP

Mean Primal Gap and Primal Integral

37

Description MIP CP CABS

TSPTW (340) TSP with time 0.227/484.05 0.026/48.97 0.003/8.97

CVRP (207) vehicle routing 0.585/1157.43 0.317/601.15 0.185/351.21

SALBP-1 (2100) assembly line 0.345/634.64 0.005/28.48 0.000/1.92

Bin Packing (1615) bin packing 0.039/86.19 0.002/8.04 0.002/5.26

MOSP (570) manufacturing 0.039/100.41 0.004/13.01 0.000/0.36

Graph-Clear (135) building security 0.110/311.83 0.015/44.27 0.000/0.49

Talent Scheduling (1000) scheduling actors 0.051/142.69 0.002/18.14 0.011/26.36

m-PDTSP (1178) pick up & delivery 0.078/180.00 0.013/26.04 0.002/5.33

1||∑wiTi (375) job scheduling 0.018/74.56 0.000/2.26 0.034/73.60
Mean primal gap at limit / primal integral

Conclusion
● Anytime DIDP solvers are promising!
● Trade-off between time and memory
● Future work: parallelization?

38Single-thread

Multi-thread

AnytimeNot anytime

CAASDy
CABS

Gurobi

CPLEX CP Optimizer

OR Tools

SCIP

ACPS APPS

DFBnB

DBDFS

CBFS

Please Use DIDP!

39

We need your ideas to advance DIDP!

● Visit our website: https://didp.ai

● Start DIDP with Python: pip install didppy
Tutorials and API Reference: https://didppy.rtfd.io

● Start DIDP with YAML: cargo install didp-yaml

● Clone the repository:
git clone https://github.com/domain-independent-dp/didp-rs
Everything in Rust

https://didp.ai
https://didppy.rtfd.io
https://github.com/domain-independent-dp/didp-rs

Why Not Anytime Weighted A*?
● A user may provide 0 dual bound (heuristic)
● Finding a satisficing solution is usually much easier in

combinatorial optimization than in AI planning

40

