Solving Domain-Independent Dynamic Programming Problems with Anytime Heuristic Search Best Paper Award Runner-up

Ryo Kuroiwa and J. Christopher Beck

Toronto Intelligent Decision Engineering Laboratory (TIDEL) Department of Mechanical and Industrial Engineering University of Toronto

Recap of DIDP

Novel model-based paradigm for combinatorial optimization

Any combinatorial optimization problem

State-based DP model

DIDP solver

Current solvers are based on **heuristic search**

Recap of DIDP

Prototype Solver: CAASDy

- Solve DP as a shortest path in the state space using A*
- Heuristic: dual bound defined in a DP model

Implemented in https://github.com/domain-independent-dp/didp-rs

4

Prototype Solver: CAASDy

- Solve DP as a shortest path in the state space using A*
- Heuristic: dual bound defined in a DP model

Implemented in https://github.com/domain-independent-dp/didp-rs

Anytime Solvers

- Quickly find a solution and continuously improve it
- Standard in OR (e.g., MIP and CP)

Can we develop anytime solvers for DIDP?

Anytime Heuristic Search Algorithms

Algorithm	Description	Reference
Depth First Branch-and-Bound (DFBnB)	DFS	
Cyclic Best-First Search (CBFS)	Hybrid of DFS and best-first search	Kao et al. 2009
Anytime Column Progressive Search (ACPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2012
Anytime Pack Progressive Search (APPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2016
Discrepancy-Bounded DFS (DBDFS)	Discrepancy-based	Beck and Perron 2000
Complete Anytime Beam Search (CABS)	Iterative beam search	Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

7

Anytime Heuristic Search Algorithms

Algorithm	Description	Reference
Depth First Branch-and-Bound (DFBnB)	DFS	
Cyclic Best-First Search (CBFS)	Hybrid of DFS and best-first search	Kao et al. 2009
Anytime Column Progressive Search (ACPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2012
Anytime Pack Progressive Search (APPS)	Hybrid of DFS and beam search	Vadlamudi et al. 2016
Discrepancy-Bounded DFS (DBDFS)	Discrepancy-based	Beck and Perron 2000
Complete Anytime Beam Search (CABS)	Iterative beam search	Zhang 1998

Implemented in https://github.com/domain-independent-dp/didp-rs

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

k = 2

$$[\{1, 2, 3\}, 0, 0]$$

f: 0

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

$$k = 2$$

$$\{1, 2, 3\}, 0, 0$$

f: 0

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Keep k best states according to the *f*-values at each layer
- No guarantee of completeness nor optimality

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

```
k = 8, incumbent: 14
```

$$\{1, 2, 3\}, 0, 0$$

f: 0

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

26

- Beam search with k = 1, 2, 4, 8, 16, ... until states are exhausted
- Prune a state *s* if $f(s) \ge$ the incumbent solution cost

Experimental Evaluation

Primal Integral

Coverage and Gap (Mean over All Problems)

Coverage and Gap (Mean over All Problems)

Coverage and Gap (TSPTW)

Coverage and Gap (m-PDTSP)

Coverage in Each Problem

	Description	MIP	CP	CAASDy	CABS		
TSPTW (340)	TSP with time	227 47		257	259		
CVRP (207)	vehicle routing	26 0		5	6		
SALBP-1 (2100)	assembly line	1357	1584	1653	1801		
Bin Packing (1615)	bin packing	1157	1234	922	1163		
MOSP (570)	manufacturing	225	437	483	527		
Graph-Clear (135)	building security	24	4	76	103		
Talent Scheduling (1000)	scheduling actors	6	7	224	253		
m-PDTSP (1117)	pick up & delivery	945	1049	947	1035		
$1 \ \sum w_i T_i$ (375)	job scheduling	109	150	270	285		
# of optimality solved instances with 8GB and 30-min							

Primal Integral (Mean over All Problems)

Mean Primal Gap and Primal Integral

	Description	MIP	CP	CABS
TSPTW (340)	TSP with time	0.227/484.05	0.026/48.97	0.003/8.97
CVRP (207)	vehicle routing	0.585/1157.43	0.317/601.15	0.185/351.21
SALBP-1 (2100)	assembly line	0.345/634.64	0.005/28.48	0.000/1.92
Bin Packing (1615)	bin packing	0.039/86.19	0.002 /8.04	0.002/5.26
MOSP (570)	manufacturing	0.039/100.41	0.004/13.01	0.000/0.36
Graph-Clear (135)	building security	0.110/311.83	0.015/44.27	0.000/0.49
Talent Scheduling (1000)	scheduling actors	0.051/142.69	0.002/18.14	0.011/26.36
m-PDTSP (1178)	pick up & delivery	0.078/180.00	0.013/26.04	0.002/5.33
$1 \ \sum w_i T_i$ (375)	job scheduling	0.018/74.56	0.000/2.26	0.034/73.60
Mean primal gap at limit / primal integral				37

Conclusion

- Anytime DIDP solvers are promising!
- Trade-off between time and memory
- Future work: parallelization?

Please Use DIDP!

We need your ideas to advance DIDP!

- Visit our website: <u>https://didp.ai</u>
- Start DIDP with Python: pip install didppy Tutorials and API Reference: <u>https://didppy.rtfd.io</u>
- Start DIDP with YAML: cargo install didp-yaml
- Clone the repository:

git clone <u>https://github.com/domain-independent-dp/didp-rs</u>
Everything in Rust

Why Not Anytime Weighted A*?

- A user may provide 0 dual bound (heuristic)
- Finding a satisficing solution is usually much easier in combinatorial optimization than in AI planning