
RPID: Rust Programmable
Interface for Domain-Independent

Dynamic Programming

Ryo Kuroiwa, National Institute of Informatics

J. Christopher Beck, University of Toronto

Overview

1. Dynamic Programming (Background)

2. didp-rs: Domain-Independent Dynamic Programming Software
(Background)

3. RPID

4. RPID vs. didp-rs

5. Comparison of Different RPID Models

6. RPID vs. Decision Diagram-Based Solvers

7. Summary

2

Dynamic Programming
(Background)

3

Maximize the total profit of items packed in the knapsack

Example: 0-1 Knapsack

4

Profit: 1

Profit: 7
Profit: 3

Profit: 3 Profit: 5

Maximize the total profit of items packed in the knapsack

Example: 0-1 Knapsack

5

Profit: 5

Profit: 1

Profit: 7
Profit: 3

Profit: 3

Profit: 3 Profit: 5

Profit: 3

Profit: 3

Profit: 5

Profit: 1

Profit: 5

Profit: 3

Profit: 1

Profit: 7

Profit: 3

Profit: 5

Profit: 7

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

Dynamic Programming (DP) for Knapsack

6

Item 𝑖
𝑟

Profit: 𝑝𝑖

𝑟

𝑟 − 𝑤𝑖

𝑉(𝑟, 𝑖)

𝑝𝑖 + 𝑉(𝑟 − 𝑤𝑖 , 𝑖 + 1)

𝑤𝑖

𝑉(𝑟, 𝑖 + 1)

Include

Exclude

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛

Dynamic Programming (DP) for Knapsack

7

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛

Dynamic Programming (DP) for Knapsack

8

State transitions

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛

Dynamic Programming (DP) for Knapsack

9

Successor states

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛

Dynamic Programming (DP) for Knapsack

10

Base case

• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛

Dynamic Programming (DP) for Knapsack

11

We further incorporate redundant information implied by

the recursive equation into a model for efficiency

State Dominance in DP

• One state may be known to be better than another state

• If the item index 𝑖 is the same, having more capacity is better

12

𝑉 𝑟, 𝑖 ≥ 𝑉(𝑟′, 𝑖) if 𝑟 ≥ 𝑟′

𝑟

𝑉(𝑟, 𝑖)

𝑟′

𝑉(𝑟′, 𝑖)
Item 𝑖

Profit: 𝑝𝑖

Dual Bound in DP

Upper bound on 𝑉 in maximization (lower bound in minimization)

13

𝑟

Profit: 5 Profit: 1

Profit: 7
Profit: 3

𝑤1 = 7 𝑤2 = 13 𝑤3 = 6 𝑤4 = 4

Dual Bound in DP

Upper bound on 𝑉 in maximization (lower bound in minimization)

Take the most efficient item and fill the knapsack with the item

14

𝑉 𝑟, 𝑖 ≤ 𝑟 ∙ max
𝑗≥𝑖

𝑝𝑗

𝑤𝑗

𝑟

Profit: 1

Profit: 7
Profit: 3

Profit:
5

7
𝑟

𝑤2 = 13 𝑤3 = 6 𝑤4 = 4

Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency
𝑝𝑗

𝑤𝑗

15

𝑟

Profit: 5 Profit: 1

Profit: 7
Profit: 3

𝑤1 = 7 𝑤2 = 13 𝑤3 = 6 𝑤4 = 4

Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency
𝑝𝑗

𝑤𝑗

2. Pack items in order until reaching the capacity limit

16

𝑟 − 7 < 13

Profit: 1

Profit: 7
Profit: 3

Profit: 5

𝑤2 = 13 𝑤3 = 6 𝑤4 = 4

Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency
𝑝𝑗

𝑤𝑗

2. Pack items in order until reaching the capacity limit

3. Fractionally include the last item

17

Profit: 1Profit: 3

Profit: 5

𝑤3 = 6 𝑤4 = 4

Profit:
7

13
(𝑟 − 7)

𝑟 − 7 < 13

didp-rs: Domain-Independent
Dynamic Programming Software
(Background)

18

General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then
solves it with a general-purpose solver

19

Modeling interfaces Solving algorithm

ddo

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search

Heuristic State Space Search in didp-rs

• Find a longest path in a state space graph (shortest for minimization)

• Use state dominance and dual bounds for pruning and guidance

20

20, 0

16, 1

20, 1

9, 2

16, 2

13, 2

20, 2

0, 3

7, 3

20, 3

0, 4

7, 4

13, 4

0, 5

7, 5

13, 3

1, 4 1, 5

3, 5

3

0

5

0

5

0

7

7

0

0 0

0 0

3

0

0

3 1

0

Node: state (𝑟, 𝑖)
Edges:

• Include 𝑖 (weight 𝑝𝑖)

• Exclude 𝑖 (weight 0)

Heuristic State Space Search in didp-rs

• Find a longest path in a state space graph (shortest for minimization)

• Use state dominance and dual bounds for pruning and guidance

21

20, 0

16, 1

20, 1

9, 2

16, 2

13, 2

20, 2

0, 3

7, 3

20, 3

0, 4

7, 4

13, 4

0, 5

7, 5

13, 3

1, 4 1, 5

3, 5

3

0

5

0

5

0

7

7

0

0 0

0 0

3

0

0

3 1

0

Node: state (𝑟, 𝑖)
Edges:

• Include 𝑖 (weight 𝑝𝑖)

• Exclude 𝑖 (weight 0)

An optimal solution (a longest path)

Modeling in didp-rs

• Define a DP model by writing expressions

• Expression tree data structures are implemented in Rust

22

Python expressions

(DIDPPy)

YAML expressions

(didp-yaml)

Rust expression trees

(dypdl)

-

elementvariabler – w[i]

r w variable

i
(- r (w i))

r – w.element(i)

DIDPPy: Python Interface in didp-rs

23

DIDPPy: Python Interface in didp-rs

24

Constants

(profits, weights, items)

DIDPPy: Python Interface in didp-rs

25

State variables

(capacity, item index)

DIDPPy: Python Interface in didp-rs

26

Values in the original problem

(called the target state)

DIDPPy: Python Interface in didp-rs

27

State dominance specified by

a resource variable

(larger 𝑟 is better)

DIDPPy: Python Interface in didp-rs

28

State transition

to include the current item

DIDPPy: Python Interface in didp-rs

29

Expressions

in Python syntax

DIDPPy: Python Interface in didp-rs

30

𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1

DIDPPy: Python Interface in didp-rs

31

if 𝑟 ≥ 𝑤𝑖

𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1

DIDPPy: Python Interface in didp-rs

32

State transition to exclude

the current item: 𝑉 𝑟, 𝑖 + 1

DIDPPy: Python Interface in didp-rs

33

Base case: 𝑉 𝑟, 𝑖 = 0 if 𝑖 = 𝑛

DIDPPy: Python Interface in didp-rs

34

A dual bound function 𝑟 ∙ max
𝑗≥𝑖

𝑝𝑗

𝑤𝑗

The Dantzig bound is hard to model

with the current expressions

dypdl: Rust Modeling Library and Interface in didp-rs

35

dypdl: Rust Modeling Library and Interface in didp-rs

36
Expressions in Rust syntax

didp-yaml: YAML Interface in didp-rs

37

didp-yaml: YAML Interface in didp-rs

38

Expressions

in a LISP-like

syntax

Pros and Cons of Expressions in didp-rs

Pros

• Declarative representation

• Different modeling interfaces with the same solving performance

• Python and Rust models can be exported to YAML files

• Algorithms may exploit structures (e.g., Kuroiwa and Beck CP2023)

39

Pros and Cons of Expressions in didp-rs

Pros

• Declarative representation

• Different modeling interfaces with the same solving performance

• Python and Rust models can be exported to YAML files

• Algorithms may exploit structures (e.g., Kuroiwa and Beck CP2023)

Cons

• Hard to express algorithmic procedures (e.g., the Dantzig bound)

• Evaluating expression trees is slower than calling native Rust code

40

RPID

41

General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then
solves it with a general-purpose solver

42

Modeling interfaces Solving algorithm

ddo

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search

General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then
solves it with a general-purpose solver

43

Modeling interfaces Solving algorithm

ddo

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search

RPID (this work) Rust trait heuristic state space search

Rust Trait

A set of methods defining behavior of a type (similar to an interface or
an abstract class, but without data members and inheritance)

44

RPID Example for 0-1 Knapsack

45

RPID Example for 0-1 Knapsack

46

Struct defining an instance

RPID Example for 0-1 Knapsack

47

State represented by 2 variables

(the capacity and the current item index)

RPID Example for 0-1 Knapsack

48

Maximization of an integral objective

RPID Example for 0-1 Knapsack

49

State representing the original problem

(called the target state)

RPID Example for 0-1 Knapsack

50

The successor states, the transition weights,

and the transition labels given a state

RPID Example for 0-1 Knapsack

51

The successor states, the transition weights,

and the transition labels given a state

Successor states

RPID Example for 0-1 Knapsack

52

Transition weights

Objective: the sum of the transition weights

(sum by default, can be overridden)

The successor states, the transition weights,

and the transition labels given a state

RPID Example for 0-1 Knapsack

53

Transition labels (include: 1, exclude: 0) to

reconstruct a solution

The successor states, the transition weights,

and the transition labels given a state

RPID Example for 0-1 Knapsack

54

If a state 𝑆 is a base case, return 𝑉(𝑆)
Otherwise, return None

State Dominance in RPID

Optional trait

Compare two states having the same key (similarly to ddo)

55

Dual Bound in RPID

Optional trait

56

Pros and Cons of RPID

Pros

• Flexible in modeling (e.g., the Dantzig bound)

• Calling native Rust code is fast

57

Pros and Cons of RPID

Pros

• Flexible in modeling (e.g., the Dantzig bound)

• Calling native Rust code is fast

Cons

• Less declarative

• A model is a black-box to a solver

• Hard to implement a modeling interface in a different language while
maintaining the solving performance

58

Q. How fast is native Rust code
compared with expressions?

59

Experimental Settings

DP models for 14 combinatorial problem classes including

• 0-1 knapsack

• Single machine total weighted tardiness (1|| σ 𝑤𝑖𝑇𝑖)

• Traveling salesperson problem with time windows (TSPTW)

Two solving algorithms with 30-min time and 8 GB memory limit

• A*: faster to prove optimality, less memory efficient
[Hart and Nillson 1968; Kuroiwa and Beck ICAPS2023]

• Complete anytime beam search (CABS): more memory efficient
[Zhang et al. 1998; Kuroiwa and Beck ICAPS2023]

60

RPID vs. didp-rs with the Same DP Models

Time (s) to optimally solve each instance

A*

61

CABS

RPID vs. didp-rs with the Same DP Models

Large speedup in the orienteering problem with time windows (OPTW)
and bin packing, where didp-rs uses large expression trees

A*

62

CABS

Q. How much gain do we get from
algorithmic dual bound functions
facilitated by RPID?

63

RPID with Algorithmic Dual Bound Functions

• The Dantzig bound for 0-1 knapsack and OPTW
• Bound using the minimum spanning tree (1-tree) for 3 TSP variants

A*

64

CABS

RPID with Algorithmic Dual Bound Functions

No reduction in search effort in many TSPTW instances possibly
because time window constraints already prune many states

A* CABS

Q. Is RPID competitive with DD-based
solvers in the same problem classes?

66

Experimental Settings

3 problems used in the CODD paper [Michel and van Hoeve 2024], with
which they compared ddo, didp-rs, and CODD:

• 0-1 Knapsack

• Golomb ruler

• Maximum independent set problem (MISP)

Model code in the original authors’ repositories

The best parameters reported in previous work or the default ones

Time in seconds to solve each instance optimally, omitting instances
solved within 1 second by all methods

67

Time (s) to Optimally Solve 0-1 Knapsack Instances

All solvers use the Dantzig bound and state dominance

68

Ddo (width: 4) CODD RPID (A*) RPID (CABS)

PI:1 5000 0.47 width: 64 2.73 0.13 0.28

PI:1 10000 0.71 width: 64 memory out 0.16 0.28

PI:2 2000 0.16 width: 64 3.70 0.02 0.29

PI:2 5000 0.44 width: 64 memory out 0.15 0.27

PI:2 10000 0.76 width: 64 memory out 0.16 0.27

PI:3 2000 3.23 width: 2048 3.47 0.34 1.38

PI:3 5000 4.87 width: 4096 6.29 0.74 4.83

PI:3 10000 4.32 width: 8192 memory out 1.26 8.73

Time (s) to Optimally Solve Golomb Ruler Instances

69

Ddo (width: 10) CODD (width: 128) RPID (A*) RPID (CABS)

n=8 0.71 0.04 1.88 1.19

n=9 6.89 0.20 14.02 13.85

n=10 50.55 0.68 memory out 143.84

n=11 memory out 10.51 memory out memory out

n=12 memory out 55.56 memory out time out

n=13 memory out 1318.98 memory out memory out

n=14 memory out time out memory out time out

Time (s) to Optimally Solve MISP Instances

Ddo (width: auto) CODD (width: 128) RPID (A*) RPID (CABS)

johnson16-2-4 2.64 1.43 0.92 0.62

keller4 5.47 29.63 15.62 39.02

hamming6-2 0.17 0.28 1.56 9.07

hamming8-2 0.30 63.69 memory out time out

hamming8-4 29.65 36.81 memory out memory out

hamming10-2 10.01 1520.08 memory out time out

brock200-1 403.20 time out memory out memory out

brock200-2 1.10 3.68 3.41 8.72

brock200-3 7.88 22.21 memory out 80.07

brock200-4 22.67 102.52 memory out 455.68

p_hat300-1 0.49 1.25 1.42 1.01

p_hat300-2 19.82 317.83 memory out memory out

Summary

• Faster and more flexible interface for DIDP when writing a model in
Rust is acceptable

• Algorithmic dual bound functions usually (but not always) improve
solving performance

• No single winner in general-purpose DP solver frameworks

DIDP website: https://didp.ai

RPID code: https://github.com/domain-independent-dp/rpid

Model code: https://github.com/Kurorororo/didp-rust-models

71

https://didp.ai/
https://github.com/domain-independent-dp/rpid
https://github.com/domain-independent-dp/rpid
https://github.com/domain-independent-dp/rpid
https://github.com/domain-independent-dp/rpid
https://github.com/domain-independent-dp/rpid
https://github.com/Kurorororo/didp-rust-models
https://github.com/Kurorororo/didp-rust-models
https://github.com/Kurorororo/didp-rust-models
https://github.com/Kurorororo/didp-rust-models
https://github.com/Kurorororo/didp-rust-models

General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then
solves it with a general-purpose solver

72

Modeling interfaces Solving algorithm

Ddo

[Gillard et al. 2021]

Rust trait

Python class

decision diagram-based

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

Heuristic state space search

RPID (this work) Rust trait Heuristic state space search

Decision Diagram-Based Branch-and-Bound

• Create multi-valued decision diagrams (MDDs) representing a model

• A dual bound is given by a relaxed DD where states are merged

73

20, 0

16, 1 20, 1

9, 2 16, 2 13, 2 20, 2

20, 0

16, 1 20, 1

13, 2 16, 2 20, 2

13, 3 16, 3 20, 3

14, 4 16, 4 20, 4

20, 5 16, 5 14, 5

Relax with

width=3

Merge Operator for Relaxed DDs

Merge states into one state better than or equal to the original states

E.g., merge states with the same item index 𝑖 using a larger capacity

74

⊕ 𝑟, 𝑖 , 𝑟′, 𝑖 = (max{𝑟, 𝑟′}, 𝑖)

𝑟
𝑟′ Merge max{𝑟, 𝑟′}

Ddo Example for 0-1 Knapsack

75

A Rust trait with 7 methods and 2 additional traits for a merge operator

A trait for state dominance and a method for a dual bound are optional

A Merge Operator and a Dual Bound in Ddo

76

Sate Ranking and State Dominance in Ddo

77

CODD Example for 0-1 Knapsack

6 closures (C++ lambda) for DP and a merge operator in addition

Closures for state dominance and a dual bound function are optional

78

State Dominance and a Dual Bound in CODD

79

Traits vs. Closures

Traits

• Method signatures are explicit in example code and trait definitions

• A struct implementing traits is required in addition to a state struct

Closures

• Closure signatures are implicit in example code

• Succinct, no need to create a single struct with many fields as each
closure can capture only necessary information

80

Successor Generation Approaches

3 steps to generate successor states:

1. Identify applicable transitions

2. Generate the successor states

3. Compute the transition weights

RPID does all in a single method

Ddo and CODD do each in a separate function

81

Successor Generation in RPID

82

The successor states, the transition weights,

and the transition labels given a state

Successor Generation in Ddo

83

Successor generation separated in 3 methods

Successor Generation in CODD

84

Successor generation separated in 3 closures

Example: Single Machine Total Weighted Tardiness

Given a set of scheduled jobs 𝑆 (a state), if job 𝑗 is scheduled next
(a transition), the tardiness becomes σ𝑘∈𝑆 𝑝𝑘 + 𝑝𝑗 − 𝑑𝑗 (the weight)

In RPID, σ𝑘∈𝑆 𝑝𝑘 is computed once in get_successors and reused for
each transition to schedule job 𝑗

Ddo and CODD may also avoid recomputation by caching it in a state
(but with additional memory per state)

85

𝑉 𝑆 =
min

𝑗∈𝑁\S
𝑤𝑗 max ෍

𝑘∈𝑆

𝑝𝑘 + 𝑝𝑗 − 𝑑𝑗 , 0 + 𝑉(𝑆 ∪ {𝑗}) if 𝑆 ≠ 𝑁

0 if 𝑆 = 𝑁

Q. Does generating all successor states
in a single function have advantage in
performance?

86

Performance of Successor Generation Methods

3 RPID models for the single machine total weighted tardiness:

• Original: σ𝑘∈𝑆 𝑝𝑘 is computed once for all transitions

• Separate: σ𝑘∈𝑆 𝑝𝑘 is computed for each transition to schedule job 𝑗

• StateCache: σ𝑘∈𝑆 𝑝𝑘 is used as an additional state variable

87

Performance of Successor Generation Methods

3 RPID models for the single machine total weighted tardiness:

• Original: σ𝑘∈𝑆 𝑝𝑘 is computed once for all transitions

• Separate: σ𝑘∈𝑆 𝑝𝑘 is computed for each transition to schedule job 𝑗

• StateCache: σ𝑘∈𝑆 𝑝𝑘 is used as an additional state variable

88

Original Separate StateCache

#solved average

time (s)

#solved average

time (s)

#solved average

time (s)

A* 277 27 277 28 274 27

CABS 299 139 295 154 298 144

	タイトルなしのセクション
	スライド 1: RPID: Rust Programmable Interface for Domain-Independent Dynamic Programming
	スライド 2: Overview
	スライド 3
	スライド 4: Example: 0-1 Knapsack
	スライド 5: Example: 0-1 Knapsack
	スライド 6: Dynamic Programming (DP) for Knapsack
	スライド 7: Dynamic Programming (DP) for Knapsack
	スライド 8: Dynamic Programming (DP) for Knapsack
	スライド 9: Dynamic Programming (DP) for Knapsack
	スライド 10: Dynamic Programming (DP) for Knapsack
	スライド 11: Dynamic Programming (DP) for Knapsack
	スライド 12: State Dominance in DP
	スライド 13: Dual Bound in DP
	スライド 14: Dual Bound in DP
	スライド 15: Dantzig Bound for 0-1 Knapsack [Dantzig 1957]
	スライド 16: Dantzig Bound for 0-1 Knapsack [Dantzig 1957]
	スライド 17: Dantzig Bound for 0-1 Knapsack [Dantzig 1957]
	スライド 18
	スライド 19: General-Purpose DP Solvers
	スライド 20: Heuristic State Space Search in didp-rs
	スライド 21: Heuristic State Space Search in didp-rs
	スライド 22: Modeling in didp-rs
	スライド 23: DIDPPy: Python Interface in didp-rs
	スライド 24: DIDPPy: Python Interface in didp-rs
	スライド 25: DIDPPy: Python Interface in didp-rs
	スライド 26: DIDPPy: Python Interface in didp-rs
	スライド 27: DIDPPy: Python Interface in didp-rs
	スライド 28: DIDPPy: Python Interface in didp-rs
	スライド 29: DIDPPy: Python Interface in didp-rs
	スライド 30: DIDPPy: Python Interface in didp-rs
	スライド 31: DIDPPy: Python Interface in didp-rs
	スライド 32: DIDPPy: Python Interface in didp-rs
	スライド 33: DIDPPy: Python Interface in didp-rs
	スライド 34: DIDPPy: Python Interface in didp-rs
	スライド 35: dypdl: Rust Modeling Library and Interface in didp-rs
	スライド 36: dypdl: Rust Modeling Library and Interface in didp-rs
	スライド 37: didp-yaml: YAML Interface in didp-rs
	スライド 38: didp-yaml: YAML Interface in didp-rs
	スライド 39: Pros and Cons of Expressions in didp-rs
	スライド 40: Pros and Cons of Expressions in didp-rs
	スライド 41
	スライド 42: General-Purpose DP Solvers
	スライド 43: General-Purpose DP Solvers
	スライド 44: Rust Trait
	スライド 45: RPID Example for 0-1 Knapsack
	スライド 46: RPID Example for 0-1 Knapsack
	スライド 47: RPID Example for 0-1 Knapsack
	スライド 48: RPID Example for 0-1 Knapsack
	スライド 49: RPID Example for 0-1 Knapsack
	スライド 50: RPID Example for 0-1 Knapsack
	スライド 51: RPID Example for 0-1 Knapsack
	スライド 52: RPID Example for 0-1 Knapsack
	スライド 53: RPID Example for 0-1 Knapsack
	スライド 54: RPID Example for 0-1 Knapsack
	スライド 55: State Dominance in RPID
	スライド 56: Dual Bound in RPID
	スライド 57: Pros and Cons of RPID
	スライド 58: Pros and Cons of RPID
	スライド 59
	スライド 60: Experimental Settings
	スライド 61: RPID vs. didp-rs with the Same DP Models
	スライド 62: RPID vs. didp-rs with the Same DP Models
	スライド 63
	スライド 64: RPID with Algorithmic Dual Bound Functions
	スライド 65: RPID with Algorithmic Dual Bound Functions
	スライド 66
	スライド 67: Experimental Settings
	スライド 68: Time (s) to Optimally Solve 0-1 Knapsack Instances
	スライド 69: Time (s) to Optimally Solve Golomb Ruler Instances
	スライド 70: Time (s) to Optimally Solve MISP Instances
	スライド 71: Summary
	スライド 72: General-Purpose DP Solvers
	スライド 73: Decision Diagram-Based Branch-and-Bound
	スライド 74: Merge Operator for Relaxed DDs
	スライド 75: Ddo Example for 0-1 Knapsack
	スライド 76: A Merge Operator and a Dual Bound in Ddo
	スライド 77: Sate Ranking and State Dominance in Ddo
	スライド 78: CODD Example for 0-1 Knapsack
	スライド 79: State Dominance and a Dual Bound in CODD
	スライド 80: Traits vs. Closures
	スライド 81: Successor Generation Approaches
	スライド 82: Successor Generation in RPID
	スライド 83: Successor Generation in Ddo
	スライド 84: Successor Generation in CODD
	スライド 85: Example: Single Machine Total Weighted Tardiness
	スライド 86
	スライド 87: Performance of Successor Generation Methods
	スライド 88: Performance of Successor Generation Methods

