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Dynamic Programming 
(Background)
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Maximize the total profit of items packed in the knapsack

Example: 0-1 Knapsack
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Maximize the total profit of items packed in the knapsack

Example: 0-1 Knapsack
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• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

Dynamic Programming (DP) for Knapsack
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Item 𝑖
𝑟

Profit: 𝑝𝑖

𝑟

𝑟 − 𝑤𝑖

𝑉(𝑟, 𝑖)

𝑝𝑖 + 𝑉(𝑟 − 𝑤𝑖 , 𝑖 + 1)

𝑤𝑖

𝑉(𝑟, 𝑖 + 1)

Include

Exclude



• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1  if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛 

Dynamic Programming (DP) for Knapsack
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• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1  if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛 

Dynamic Programming (DP) for Knapsack
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State transitions



• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1  if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛 

Dynamic Programming (DP) for Knapsack
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Successor states



• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1  if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛 

Dynamic Programming (DP) for Knapsack
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Base case



• State: the current capacity 𝑟 and the current item index 𝑖

• 𝑉(𝑟, 𝑖): the maximum profit achieved from the state

• 𝑛: # of items

• Objective: compute 𝑉 𝑐, 0 , where 𝑐 is the knapsack capacity

𝑉 𝑟, 𝑖 = ቐ
max 𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1 , 𝑉 𝑟, 𝑖 + 1 if 𝑖 < 𝑛 and 𝑟 ≥ 𝑤𝑖

𝑉 𝑟, 𝑖 + 1  if 𝑖 < 𝑛 and 𝑟 < 𝑤𝑖

0 if 𝑖 = 𝑛 

Dynamic Programming (DP) for Knapsack
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We further incorporate redundant information implied by 

the recursive equation into a model for efficiency



State Dominance in DP

• One state may be known to be better than another state

• If the item index 𝑖 is the same, having more capacity is better
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𝑉 𝑟, 𝑖 ≥ 𝑉(𝑟′, 𝑖) if 𝑟 ≥ 𝑟′

𝑟

𝑉(𝑟, 𝑖)

𝑟′

𝑉(𝑟′, 𝑖)
Item 𝑖

Profit: 𝑝𝑖



Dual Bound in DP

Upper bound on 𝑉 in maximization (lower bound in minimization)
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Dual Bound in DP

Upper bound on 𝑉 in maximization (lower bound in minimization)

Take the most efficient item and fill the knapsack with the item
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𝑉 𝑟, 𝑖 ≤ 𝑟 ∙ max
𝑗≥𝑖

𝑝𝑗

𝑤𝑗

𝑟

Profit: 1

Profit: 7
Profit: 3

Profit: 
5

7
𝑟

𝑤2 = 13 𝑤3 = 6 𝑤4 = 4



Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency 
𝑝𝑗

𝑤𝑗
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Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency 
𝑝𝑗

𝑤𝑗

2. Pack items in order until reaching the capacity limit
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Dantzig Bound for 0-1 Knapsack [Dantzig 1957]

1. Sort items by efficiency 
𝑝𝑗

𝑤𝑗

2. Pack items in order until reaching the capacity limit

3. Fractionally include the last item

17

Profit: 1Profit: 3

Profit: 5

𝑤3 = 6 𝑤4 = 4

Profit:
7

13
(𝑟 − 7)

𝑟 − 7 < 13



didp-rs: Domain-Independent 
Dynamic Programming Software 
(Background)
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General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then 
solves it with a general-purpose solver

19

Modeling interfaces Solving algorithm

ddo 

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based 

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based 

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search



Heuristic State Space Search in didp-rs

• Find a longest path in a state space graph (shortest for minimization)

• Use state dominance and dual bounds for pruning and guidance
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Heuristic State Space Search in didp-rs

• Find a longest path in a state space graph (shortest for minimization)

• Use state dominance and dual bounds for pruning and guidance

21

20, 0 

16, 1 

20, 1 

9, 2 

16, 2 

13, 2 

20, 2 

0, 3 

7, 3 

20, 3 

0, 4 

7, 4 

13, 4 

0, 5 

7, 5 

13, 3 

1, 4 1, 5 

3, 5 

3

0

5

0

5

0

7

7

0

0 0

0 0

3

0

0

3 1

0

Node: state (𝑟, 𝑖)
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An optimal solution (a longest path)



Modeling in didp-rs

• Define a DP model by writing expressions

• Expression tree data structures are implemented in Rust
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Python expressions

(DIDPPy)

YAML expressions 

(didp-yaml)

Rust expression trees

(dypdl)

-

elementvariabler – w[i]

r w variable

i
(- r (w i))

r – w.element(i)



DIDPPy: Python Interface in didp-rs
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DIDPPy: Python Interface in didp-rs
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Constants

(profits, weights, items)



DIDPPy: Python Interface in didp-rs
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State variables

(capacity, item index)



DIDPPy: Python Interface in didp-rs
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Values in the original problem

(called the target state)



DIDPPy: Python Interface in didp-rs
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State dominance specified by 

a resource variable

(larger 𝑟 is better)



DIDPPy: Python Interface in didp-rs

28

State transition

to include the current item



DIDPPy: Python Interface in didp-rs
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Expressions

in Python syntax



DIDPPy: Python Interface in didp-rs
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𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1



DIDPPy: Python Interface in didp-rs

31

if 𝑟 ≥ 𝑤𝑖

𝑝𝑖 + 𝑉 𝑟 − 𝑤𝑖 , 𝑖 + 1



DIDPPy: Python Interface in didp-rs
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State transition to exclude 

the current item: 𝑉 𝑟, 𝑖 + 1



DIDPPy: Python Interface in didp-rs
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Base case: 𝑉 𝑟, 𝑖 = 0 if 𝑖 = 𝑛



DIDPPy: Python Interface in didp-rs
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A dual bound function 𝑟 ∙ max
𝑗≥𝑖

𝑝𝑗

𝑤𝑗

The Dantzig bound is hard to model 

with the current expressions



dypdl: Rust Modeling Library and Interface in didp-rs
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dypdl: Rust Modeling Library and Interface in didp-rs

36
Expressions in Rust syntax



didp-yaml: YAML Interface in didp-rs
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didp-yaml: YAML Interface in didp-rs

38

Expressions

in a LISP-like

syntax



Pros and Cons of Expressions in didp-rs

Pros

• Declarative representation

• Different modeling interfaces with the same solving performance 

• Python and Rust models can be exported to YAML files

• Algorithms may exploit structures (e.g., Kuroiwa and Beck CP2023)

39



Pros and Cons of Expressions in didp-rs

Pros

• Declarative representation

• Different modeling interfaces with the same solving performance 

• Python and Rust models can be exported to YAML files

• Algorithms may exploit structures (e.g., Kuroiwa and Beck CP2023)

Cons

• Hard to express algorithmic procedures (e.g., the Dantzig bound)

• Evaluating expression trees is slower than calling native Rust code

40



RPID
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General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then 
solves it with a general-purpose solver

42

Modeling interfaces Solving algorithm

ddo 

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based 

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based 

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search



General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then 
solves it with a general-purpose solver

43

Modeling interfaces Solving algorithm

ddo 

[Gillard, Schaus, and Coppe 2020]

Rust trait

Python class

decision diagram-based 

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based 

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

heuristic state space search

RPID (this work) Rust trait heuristic state space search



Rust Trait

A set of methods defining behavior of a type (similar to an interface or 
an abstract class, but without data members and inheritance)

44



RPID Example for 0-1 Knapsack
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RPID Example for 0-1 Knapsack
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Struct defining an instance



RPID Example for 0-1 Knapsack
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State represented by 2 variables

(the capacity and the current item index)



RPID Example for 0-1 Knapsack
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Maximization of an integral objective



RPID Example for 0-1 Knapsack
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State representing the original problem

(called the target state)



RPID Example for 0-1 Knapsack
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The successor states, the transition weights, 

and the transition labels given a state



RPID Example for 0-1 Knapsack
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The successor states, the transition weights, 

and the transition labels given a state

Successor states



RPID Example for 0-1 Knapsack
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Transition weights

Objective: the sum of the transition weights 

(sum by default, can be overridden)

The successor states, the transition weights, 

and the transition labels given a state



RPID Example for 0-1 Knapsack
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Transition labels (include: 1, exclude: 0) to 

reconstruct a solution

The successor states, the transition weights, 

and the transition labels given a state



RPID Example for 0-1 Knapsack
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If a state 𝑆 is a base case, return 𝑉(𝑆)
Otherwise, return None



State Dominance in RPID

Optional trait

Compare two states having the same key (similarly to ddo)
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Dual Bound in RPID

Optional trait
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Pros and Cons of RPID

Pros

• Flexible in modeling (e.g., the Dantzig bound)

• Calling native Rust code is fast

57



Pros and Cons of RPID

Pros

• Flexible in modeling (e.g., the Dantzig bound)

• Calling native Rust code is fast

Cons

• Less declarative

• A model is a black-box to a solver

• Hard to implement a modeling interface in a different language while 
maintaining the solving performance

58



Q. How fast is native Rust code 
compared with expressions?
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Experimental Settings

DP models for 14 combinatorial problem classes including

• 0-1 knapsack

• Single machine total weighted tardiness (1|| σ 𝑤𝑖𝑇𝑖)

• Traveling salesperson problem with time windows (TSPTW)

Two solving algorithms with 30-min time and 8 GB memory limit

• A*: faster to prove optimality, less memory efficient 
[Hart and Nillson 1968; Kuroiwa and Beck ICAPS2023]

• Complete anytime beam search (CABS): more memory efficient
[Zhang et al. 1998; Kuroiwa and Beck ICAPS2023]
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RPID vs. didp-rs with the Same DP Models

Time (s) to optimally solve each instance

A*
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CABS



RPID vs. didp-rs with the Same DP Models

Large speedup in the orienteering problem with time windows (OPTW) 
and bin packing, where didp-rs uses large expression trees

A*
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CABS



Q. How much gain do we get from 
algorithmic dual bound functions 
facilitated by RPID?
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RPID with Algorithmic Dual Bound Functions

• The Dantzig bound for 0-1 knapsack and OPTW
• Bound using the minimum spanning tree (1-tree) for 3 TSP variants 

A*
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CABS



RPID with Algorithmic Dual Bound Functions

No reduction in search effort in many TSPTW instances possibly 
because time window constraints already prune many states

A* CABS



Q. Is RPID competitive with DD-based 
solvers in the same problem classes?
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Experimental Settings

3 problems used in the CODD paper [Michel and van Hoeve 2024], with 
which they compared ddo, didp-rs, and CODD:

• 0-1 Knapsack

• Golomb ruler

• Maximum independent set problem (MISP)

Model code in the original authors’ repositories

The best parameters reported in previous work or the default ones

Time in seconds to solve each instance optimally, omitting instances 
solved within 1 second by all methods
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Time (s) to Optimally Solve 0-1 Knapsack Instances

All solvers use the Dantzig bound and state dominance
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Ddo (width: 4) CODD  RPID (A*) RPID (CABS)

PI:1 5000 0.47 width:     64 2.73 0.13 0.28

PI:1 10000 0.71 width:     64 memory out 0.16 0.28

PI:2 2000 0.16 width:     64 3.70 0.02 0.29

PI:2 5000 0.44 width:     64 memory out 0.15 0.27

PI:2 10000 0.76 width:     64 memory out 0.16 0.27

PI:3 2000 3.23 width: 2048 3.47 0.34 1.38

PI:3 5000 4.87 width: 4096 6.29 0.74 4.83

PI:3 10000 4.32 width: 8192 memory out 1.26 8.73



Time (s) to Optimally Solve Golomb Ruler Instances

69

Ddo (width: 10) CODD (width: 128) RPID (A*) RPID (CABS)

n=8 0.71 0.04 1.88 1.19

n=9 6.89 0.20 14.02 13.85

n=10 50.55 0.68 memory out 143.84

n=11 memory out 10.51 memory out memory out

n=12 memory out 55.56 memory out time out

n=13 memory out 1318.98 memory out memory out

n=14 memory out time out memory out time out



Time (s) to Optimally Solve MISP Instances

Ddo (width: auto) CODD (width: 128) RPID (A*) RPID (CABS)

johnson16-2-4 2.64 1.43 0.92 0.62

keller4 5.47 29.63 15.62 39.02

hamming6-2 0.17 0.28 1.56 9.07

hamming8-2 0.30 63.69 memory out time out

hamming8-4 29.65 36.81 memory out memory out

hamming10-2 10.01 1520.08 memory out time out

brock200-1 403.20 time out memory out memory out

brock200-2 1.10 3.68 3.41 8.72

brock200-3 7.88 22.21 memory out 80.07

brock200-4 22.67 102.52 memory out 455.68

p_hat300-1 0.49 1.25 1.42 1.01

p_hat300-2 19.82 317.83 memory out memory out



Summary

• Faster and more flexible interface for DIDP when writing a model in 
Rust is acceptable

• Algorithmic dual bound functions usually (but not always) improve 
solving performance 

• No single winner in general-purpose DP solver frameworks

DIDP website: https://didp.ai

RPID code: https://github.com/domain-independent-dp/rpid

Model code: https://github.com/Kurorororo/didp-rust-models
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General-Purpose DP Solvers

Similarly to CP, a user formulates a declarative DP model and then 
solves it with a general-purpose solver

72

Modeling interfaces Solving algorithm

Ddo 

[Gillard et al. 2021]

Rust trait

Python class

decision diagram-based 

branch-and-bound

CODD

[Michel and van Hoeve 2024]

C++ lambda decision diagram-based 

branch-and-bound

didp-rs

[Kuroiwa and Beck 2023]

Rust expressions

Python expressions

YAML expressions

Heuristic state space search

RPID (this work) Rust trait Heuristic state space search



Decision Diagram-Based Branch-and-Bound

• Create multi-valued decision diagrams (MDDs) representing a model

• A dual bound is given by a relaxed DD where states are merged
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20, 0 

16, 1 20, 1 

9, 2 16, 2 13, 2 20, 2 

20, 0 

16, 1 20, 1 

13, 2 16, 2 20, 2 

13, 3 16, 3 20, 3 

14, 4 16, 4 20, 4 

20, 5 16, 5 14, 5 

Relax with 

width=3



Merge Operator for Relaxed DDs

Merge states into one state better than or equal to the original states

E.g., merge states with the same item index 𝑖 using a larger capacity

74

⊕ 𝑟, 𝑖 , 𝑟′, 𝑖 = (max{𝑟, 𝑟′}, 𝑖)

𝑟
𝑟′ Merge max{𝑟, 𝑟′}



Ddo Example for 0-1 Knapsack

75

A Rust trait with 7 methods and 2 additional traits for a merge operator

A trait for state dominance and a method for a dual bound are optional



A Merge Operator and a Dual Bound in Ddo
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Sate Ranking and State Dominance in Ddo
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CODD Example for 0-1 Knapsack

6 closures (C++ lambda) for DP and a merge operator in addition

Closures for state dominance and a dual bound function are optional
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State Dominance and a Dual Bound in CODD

79



Traits vs. Closures

Traits

• Method signatures are explicit in example code and trait definitions

• A struct implementing traits is required in addition to a state struct

Closures

• Closure signatures are implicit in example code 

• Succinct, no need to create a single struct with many fields as each 
closure can capture only necessary information
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Successor Generation Approaches

3 steps to generate successor states:

1. Identify applicable transitions

2. Generate the successor states

3. Compute the transition weights

RPID does all in a single method

Ddo and CODD do each in a separate function

81



Successor Generation in RPID

82

The successor states, the transition weights, 

and the transition labels given a state



Successor Generation in Ddo

83

Successor generation separated in 3 methods



Successor Generation in CODD

84

Successor generation separated in 3 closures



Example: Single Machine Total Weighted Tardiness

Given a set of scheduled jobs 𝑆 (a state), if job 𝑗 is scheduled next
(a transition), the tardiness becomes σ𝑘∈𝑆 𝑝𝑘 + 𝑝𝑗 − 𝑑𝑗 (the weight)

In RPID, σ𝑘∈𝑆 𝑝𝑘 is computed once in get_successors and reused for 
each transition to schedule job 𝑗

Ddo and CODD may also avoid recomputation by caching it in a state 
(but with additional memory per state)

85

𝑉 𝑆 =
min

𝑗∈𝑁\S
𝑤𝑗 max ෍

𝑘∈𝑆

𝑝𝑘 + 𝑝𝑗 − 𝑑𝑗 , 0 + 𝑉(𝑆 ∪ {𝑗})  if 𝑆 ≠ 𝑁

0 if 𝑆 = 𝑁



Q. Does generating all successor states 
in a single function have advantage in 
performance?
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Performance of Successor Generation Methods

3 RPID models for the single machine total weighted tardiness:

• Original: σ𝑘∈𝑆 𝑝𝑘 is computed once for all transitions

• Separate: σ𝑘∈𝑆 𝑝𝑘 is computed for each transition to schedule job 𝑗

• StateCache: σ𝑘∈𝑆 𝑝𝑘 is used as an additional state variable
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Performance of Successor Generation Methods

3 RPID models for the single machine total weighted tardiness:

• Original: σ𝑘∈𝑆 𝑝𝑘 is computed once for all transitions

• Separate: σ𝑘∈𝑆 𝑝𝑘 is computed for each transition to schedule job 𝑗

• StateCache: σ𝑘∈𝑆 𝑝𝑘 is used as an additional state variable
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Original Separate StateCache

#solved average 

time (s)

#solved average

time (s)

#solved average 

time (s)

A* 277 27 277 28 274 27

CABS 299 139 295 154 298 144
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